
   

NUREG/CR-6366
PNL-10709
PolyRES: A Polygon-Based Richards Equation Solver

Prepared by
R. G. Hills, New Mexico State University
P. D. Meyer, Pacific Northwest Laboratory
M. L. Rockhold, Pacific Northwest Laboratory

Pacific Northwest Laboratory
Richland, WA 99352

Subcontractor:
Department of Mechanical Engineering
New Mexico State University
Las Cruces, NM 88003

Prepared for
Division of Regulatory Applications
Office of Nuclear Regulatory Research
U.S. Nuclear Regulatory Commission
Washington DC 20555-0001
NRC JCN L2466





    
Abstract
This document describes the theory, implementation, and use of a software package designed to solve the transient, two-
dimensional, Richards equation for water flow in unsaturated-saturated soils. This package was specifically designed to model 
complex geometries with minimal input from the user. The spatial variation of the hydraulic properties can be defined across 
individual polygon-shaped subdomains, called objects. These objects combine to form a polygon-shaped model domain. Each 
object can have its own distribution of hydraulic parameters. The resulting model domain and polygon-shaped internal objects 
are mapped onto a rectangular, finite-volume, computational grid by a preprocessor. This allows the user to specify model 
geometry independently of the underlying grid and greatly simplifies user input for complex geometries. In addition, this 
approach significantly reduces the computational requirements since complex geometries are actually modeled on a rectangu-
lar grid. This results in well-structured, finite difference-like systems of equations that require minimal storage and are very 
efficient to solve.

The documentation for this software package includes a user’s manual, a detailed description of the underlying theory, and a 
detailed discussion of program flow. Several example problems are presented that show the use and features of the software 
package. The water flow predictions for several of these example problems are compared to those of another algorithm (Kirk-
land et al., 1992) to test for prediction equivalency.

The computer code described in this document is available from the Energy Science and Technology Software Center, P.O. 
Box 1020, Oak Ridge, TN 37831-1020.
iii NUREG/CR-6366



  
NUREG/CR-6366 iv



    
Contents
 Abstract .....................................................................................................................................................................................  iii

 Foreword ..................................................................................................................................................................................  vii

 Acknowledgments ...................................................................................................................................................................... ix

1.0 Introduction ............................................................................................................................................................................ 1

1.1 Overview .......................................................................................................................................................................... 1
1.2 Approach .......................................................................................................................................................................... 1

2.0 User's Manual......................................................................................................................................................................... 3

2.1 Overview .......................................................................................................................................................................... 3
2.2 Watermap ......................................................................................................................................................................... 3

2.2.1 Sample Geometry File for Figure 2.1 ...................................................................................................................... 5

2.3 Water ................................................................................................................................................................................ 6

2.3.1 User-Supplied Subroutines for Water Corresponding to Figure 2.1 ....................................................................... 6

3.0 Theory .................................................................................................................................................................................. 13

3.1 Overview ........................................................................................................................................................................ 13
3.2 Mass Balance.................................................................................................................................................................. 13
3.3 Boundary Conditions...................................................................................................................................................... 16
3.4 Cells Fully Outside the Boundary .................................................................................................................................. 18
3.5 Mass Correction.............................................................................................................................................................. 19
3.6 Fluxes Between Polygon Objects ................................................................................................................................... 19
3.7 Summary......................................................................................................................................................................... 21

4.0 Preprocessor ......................................................................................................................................................................... 23

4.1 Overview ........................................................................................................................................................................ 23
4.2 MAIN ............................................................................................................................................................................. 23
4.3 BNDFLUX ..................................................................................................................................................................... 24
4.4 BOUNDINFO................................................................................................................................................................. 24
4.5 FILL................................................................................................................................................................................ 25

5.0 Richards Equation Solver..................................................................................................................................................... 27

5.1 Overview ........................................................................................................................................................................ 27
5.2 MAIN ............................................................................................................................................................................. 27
5.3 MATRIX ........................................................................................................................................................................ 28
5.4 UPDATE ........................................................................................................................................................................ 28
5.5 UPDATEFLUX.............................................................................................................................................................. 29
5.6 UPDATEFLUXSEGS .................................................................................................................................................... 29

6.0 Example Problems................................................................................................................................................................ 31

6.1 Example 1: Uniform Soil................................................................................................................................................ 31

6.1.1 Input File for Example 1........................................................................................................................................ 31
6.1.2 User-Supplied Subroutines for Example 1 ............................................................................................................ 32
v NUREG/CR-6366



           
6.2 Example 2: Blocked Soil ................................................................................................................................................ 35

6.2.1 Example 2a: Multiple homogeneous polygon objects........................................................................................... 36

6.2.1.1 Input File for Example 2a .............................................................................................................................. 36
6.2.1.2 User Subroutine VG_PROP for Example 2a ................................................................................................. 37

6.2.2 Example 2b: Single heterogeneous polygon object............................................................................................... 38

6.2.2.1 User Subroutine VG_PROP for Example 2b................................................................................................. 38

6.3 Example 3: Engineered Cover........................................................................................................................................ 39

6.3.1 User Subroutine OUTPUT for Example 3............................................................................................................. 39

7.0 Results .................................................................................................................................................................................. 43

7.1 Introduction .................................................................................................................................................................... 43
7.2 Results and Comparative Analysis for the First Two Test Cases................................................................................... 43
7.3 Results for the Engineered Cover................................................................................................................................... 43

8.0 Discussion and Conclusions................................................................................................................................................. 55

9.0 References ............................................................................................................................................................................ 57

Figures

2.1.. Example geometry ...............................................................................................................................................................4

3.1.. Polygon objects and computational grid ............................................................................................................................14

3.2.. Two boundary segments.....................................................................................................................................................18

6.1.. Model domain and van Genuchten parameters for uniform soil example .........................................................................32

6.2.. Model domain and van Genuchten parameters for a blocked soil example.......................................................................35

7-1.. Object map for the blocked soil .........................................................................................................................................44

7-2.. Contours of volumetric water content on day 70 for Example 1: Uniform Soil ................................................................45

7-3.. Contours of volumetric water content on day 70 for Example 2a: Blocked Soil...............................................................46

7-4.. Contours of volumetric water content on day 70 for Example 2b: Blocked Soil ..............................................................47

7-5.. Object map for the engineered cover .................................................................................................................................49

7-6.. Water movement across segments as output from Water for Example 3: Engineered Cover.........................................50

7-7.. Contours of pressure head at 1050 days for Example 3: Engineered Cover......................................................................51

7-8.. Vector plot of water flux at 1050 days for Example 3: Engineered Cover.........................................................................52

7-9.. Detail of water flux near the corner of the capillary barrier at 1050 days for Example 3: Engineered Cover...................53

7-10..Detail of water flux for a single column of nodes above the capillary barrier at x=59.5 ft for Example 3 .......................54

Tables

7.1.. Prediction and prediction error statistics........................................................................................................................... 48
NUREG/CR-6366 vi



         
Foreword
‘This technical report, NUREG/CR-6366, was prepared by the New Mexico State University and Pacific Northwest Labora-
tory1 under a research project with the Waste Management Branch in the Office of Nuclear Regulatory Research (FIN L2466). 
The report documents PolyRES2, a computer code used to simulate ground-water flow in complex, heterogeneous, unsaturated 
porous media related to assessment of low-level radioactive waste (LLW) disposal sites and engineered facilities. The unique 
aspect of the documented code is its use of a polygon-based solution technique to solve the governing Richards equation for 
partially saturated flow conditions. The report provides a demonstration of the code’s capabilities using a range of test case 
examples. The code was used in the development and testing of an infiltration evaluation methodology (documented in 
NUREG/CR-6346) for use in assessing performance of a LLW disposal facility. The documented code and simulation exam-
ples were independently peer-reviewed by scientists at Sandia National Laboratories.

NUREG/CR-6366 is not a substitute for NRC regulations, and compliance is not required. The approaches and/or methods 
described in this NUREG/CR are provided for information only. Publication of this report does not necessarily constitute NRC 
approval or agreement with the information contained herein.

1.  Pacific Northwest Laboratory is operated for the U.S. Department of Energy by Battelle Memorial Institute under Contract DE-AC06-76RLO 1830.

2.  Copies of the PolyRES computer software are available from the Energy Science and Technology Software Center, P.O. Box 1020, Oak Ridge, TN 37831-
1020.
vii NUREG/CR-6366



  
NUREG/CR-6366 viii



    
Acknowledgments
The authors wish to acknowledge the support of the NRC Office of Nuclear Regulatory Research. The computer code 
described in this document was developed for the project, Application of an Infiltration Evaluation Methodology to Low-Level 
Waste Performance Assessment Studies. Tom Nicholson is the NRC technical monitor for this project. The advice and support 
of Glendon Gee of Pacific Northwest Laboratory, and Ralph Cady and Tom Nicholson of the NRC is greatly appreciated. 
Thanks are also extended to Jim McCord of Sandia National Laboratory for his review of the code and its documentation.
ix NUREG/CR-6366



  
NUREG/CR-6366 x



      
1.0 Introduction
1.1 Overview

This document provides a description of a polygon-based Richards equation solver software package. The documentation 
assumes and the operation of the code requires that the user has a working knowledge of soil physics, numerical methods, and 
Fortran programming. The solver uses a finite volume approach and can model variably saturated (unsaturated-saturated) tran-
sient flow in two dimensions. The package is designed to allow the user to easily model polygon-shaped regions with flux, 
head, or unit-gradient boundary conditions. The region may be composed of one or more irregularly shaped objects for which 
the van Genuchten properties (van Genuchten, 1980a, 1980b) may be spatially variable or constant. 

The primary goals that guided the development of this software package were 1) complex geometries associated with barrier 
caps should be very easy for the user to specify and modify, and 2) the execution of the water solver must be fast so it can be 
used to model large-scale problems over long time scales. The geometry of the problem, including the location of the bound-
aries, their type, and the shape of internal objects are defined through a simple user-supplied input file. The remaining input 
data, such as the transient behavior of boundary conditions, are provided through user-supplied subroutines. This provides the 
user with flexibility as to the type of problems solved. 

The computer code described in this document is available from the Energy Science and Technology Software Center, P.O. 
Box 1020, Oak Ridge, TN 37831-1020.

1.2 Approach

The model domain comprises one or more internal polygon-shaped objects. These objects must fully cover the model domain. 
Each object is defined by the user through the coordinates of the polygon corner points. Each object may correspond to a dif-
ferent soil type, or a soil with different stochastic properties. 

To enhance user-friendliness, a preprocessor was developed that maps the geometry of the model domain and the internal 
objects onto a rectangular computational grid. Mapping the problem to a rectangular grid results in well-structured, banded, 
symmetric matrices that are quick to assemble, efficient to store, and quick to solve even though the geometry may be very 
complex. This allows the user to define the geometry of the region being simulated and the geometry of internal objects within 
that region independently of the computational grid. There is no requirement that the underlying grid align with the problem 
boundaries or with the sides of the internal objects. The boundary of the model domain is also defined by polygon corner 
points. Each segment of the boundary polygon can be specified as a head, flux, or unit gradient boundary segment. 

The spatial distribution of the van Genuchten parameters (van Genuchten, 1980a, 1980b) over each object are defined through 
a user-supplied FORTRAN subroutine. This allows the user to specify constant parameters over an object or to define stochas-
tic or other distributions over the object. User-supplied subroutines are also used to define initial conditions, time dependence 
of the boundary conditions, and output format. These subroutines are linked to the Richards equation solver before execution.
1 NUREG/CR-6366



 

Introduction

  
NUREG/CR-6366 2



                                   
2.0 User's Manual
2.1 Overview

Program input must be provided by the user to each of two components of the polygon-based solver. These components are the 
geometric preprocessor Watermap and the Richards equation solver Water. Watermap takes the user-defined polygon-
shaped model domain, and the polygon-shaped internal objects, and maps these onto a user-defined rectangular computational 
grid. Watermap then outputs the mapped results in a form readable by the Richards equation solver. Once preprocessing is 
complete, the Richards equation solver Water is compiled, linked to user-supplied subroutines defining van Genuchten prop-
erties (van Genuchten, 1980a, 1980b), initial conditions, transient behavior of the boundaries, and the output format. The 
resulting executable code will then evaluate water contents, heads, and fluxes for the time interval specified by the user.

To run the package, the user should do the following.

1. Create the user-supplied input file describing the geometry of the objects as discussed below.
2. Execute the pre-processor Watermap. This routine will ask for the name of the input file. Watermap generates two output 

files, one named by the user that defines geometry information for use by Water, and one named INCLUDE.F that is a 
FORTRAN include file defining array sizes.

3. Compile Water.f so that the object code includes the INCLUDE.F information. Failure to complete this step after modify-
ing the input file may result in execution errors.

4. Generate and compile the user-supplied subroutine file. Link this file with the object version of Water and execute the 
results. When executed, Water will ask for the name of the output file generated by Watermap and for time-step informa-
tion. 

Specific information is provided below.

2.2 Watermap 

Watermap preprocesses the user-supplied geometry file to evaluate finite volume cell information for the Richards equation 
solver Water. Listed in Section 2.2.1 is a sample geometry file that defines the geometry shown in Figure 2.1. This geometry 
defines an engineered waste isolation cover and is taken from Meyer (1993). Free format is used throughout, and line skips can 
be placed between the records at the user's discretion.

The underlying finite volume grid is defined first (see Section 2.2.1), with x measured from left to right and y measured down-
ward. Any units can be used as long as the units are consistent throughout the input file and the user-supplied subprograms. 
The user can use a uniform grid or a variably spaced rectangular grid to increase the resolution locally. In the example pro-
vided, the grid in the x-direction contains three regions with 13 equally sized cells from x=0 to x=16.25, 11 equally sized cells 
from x=16.25 to x=30, and 64 equally sized cells from x=30 to x=90. The y direction grid contains five regions. 

The boundary polygon defining the type and location of the boundaries is defined next. In this example, the boundary polygon 
is defined by 10 linear segments with the x-y coordinate (i.e., x=0, y=23.25) of the first point of the first polygon segment given 
first. The point x=36, y=16.05 represents the end point of the first segment and the beginning point of the second segment. The 
beginning point of the last boundary segment is x=0, y=27.852. The last segment is assumed to end at the original point x=0, 
y=23.25. Note, specification of the boundary polygon must include all points of intersection (e.g., x=36, y=16.05) and not just 
the polygon vertices. The third and fourth columns represent the boundary type and the internal polygon number adjacent to 
this line segment. The internal polygon numbers must be provided by the user for each boundary segment so that the solver 
knows which set of van Genuchten properties to use. For example, internal polygon (object) five lies along segment two of the 
boundary polygon. A boundary line segment cannot lie along more than one internal polygon. However, segments can be split 
into colinear segments so that each one is adjacent to only one internal object.  The boundary types, which appear in the third 
column, are represented by the integers 1, 2, and 3, where

1 indicates a head boundary,
2 indicates a flux boundary, and
3 indicates a unit gradient boundary in the vertical direction.

The time dependence for the first two types of boundaries is not defined here but in the user-supplied subroutines. These sub-
routines are discussed in Section 2.3. 

After the boundary polygon segments are defined, the number of internal polygons and the polygon corner points are defined. 
Internal polygons must cover the entire region defined by the boundary polygon without overlapping. The preprocessor will 
3 NUREG/CR-6366



 

User's Manual

  
   

O
b

je
ct

 3
: 

G
ra

ve
l

O
b

je
ct

 2
: 

G
ra

ve
l

O
b

je
ct

 4
: 

C
o

n
cr

et
e/

W
as

te

O
b

je
ct

 1
: 

U
n

d
is

tu
rb

ed
 C

la
ye

y 
S

an
d

O
b

je
ct

 5
: 

S
an

d

C
o

n
st

an
t 

P
re

ss
u

re
 =

 0

No Flux
No Flux

C
o

n
st

an
t 

F
lu

x 
= 

2.
83

5E
-4

 f
t/

d
ay

(0
.0

,2
3.

25
)

(0
.0

,2
7.

85
2)

(0
.0

,6
1.

0)

(3
1.

0,
51

.0
)

(3
6.

0,
51

.0
)

(3
6.

0,
16

.0
5)

(9
0.

0,
5.

25
)

(9
0.

0,
6.

75
)

(9
0.

0,
20

.0
)

(9
0.

0,
48

.0
)

(9
0.

0,
51

.0
)

(9
0.

0,
61

.0
)

(3
7.

5,
51

.0
)

(3
7.

5,
17

.2
5)

(3
8.

5,
21

.0
)

(3
8.

5,
48

.0
)

F
ig

ur
e 

2.
1:

 E
xa

m
pl

e 
G

eo
m

et
ry

F
ig

ur
e 

2.
1.

E
xa

m
pl

e 
ge

om
et

ry
NUREG/CR-6366 4



 

User's Manual

         
check whether the simulation domain is properly covered and will print an error message if it is not. These polygons are used 
to define the subdomains across which the user may specify different variations in the van Genuchten properties (discussed in 
the next section). In this example, there are five internal polygons (objects), the first defined by five points (i.e., x-y pairs), the 
second by five points, the third by eight points, the fourth by four points, and the last by six points. Any record after the last 
internal polygon record is ignored. Note, numbering of internal polygons is determined by their order of appearance in the 
input file.

Given the user defined geometry input file, Watermap generates two output files. One file is used as input for the Richards 
equation solver. Watermap will ask the user to name this file. The second file is INCLUDE.F, which is a FORTRAN include 
file that defines the array sizes used by Water for this particular geometry.

2.2.1 Sample Geometry File for Figure 2.1
3 : Number of cell size regions for x direction
0 16.25 13    : x1 x2 nx - region 1
16.25 30 11   : x1 x2 nx - region 2
30 90 64      : x1 x2 nx - region 3

5 : Number of cell size regions for y direction
5.25 17.25 64 : y1 y2 ny - region 1
17.25 20 11   : y1 y2 ny - region 2
20 23.25 13   : y1 y2 ny - region 3
23.25 24 3    : y1 y2 ny - region 4
24 61 37      : y1 y2 ny - region 5

10 : Number of points for boundary polygon followed by x-y pairs, type, object #
0 23.25  2 2
36 16.05 2 5
90 5.25  2 5
90 6.75  2 3
90 20    2 4
90 48    2 3
90 51    2 1
90 61    1 1
0 61     2 1
0 27.852 2 2

5 : Total number of internal objects (excluding boundary polygon)

5 : Number of points for object 1 followed by x-y pairs
0 27.852
31 51
90 51
90 61
0 61

5 : Number of points for object 2 followed by x-y pairs
0 23.25
36 16.05
36 51
31 51
0 27.852

8 : Number of points for object 3 followed by x-y pairs
37.5 17.25
90 6.75
90 20
38.5 21
38.5 48
90 48
5 NUREG/CR-6366



 

User's Manual

                         
90 51
37.5 51

4 : Number of points for object 4 followed by x-y pairs
38.5 21
90 20
90 48
38.5 48

6 : Number of points for object 5 followed by x-y pairs
36 16.05
36 51
37.5 51
37.5 17.25
90 6.75
90 5.25

2.3 Water

After Watermap generates a preprocessed data file and an INCLUDE.F file, the user must re-compile Water.f so that the 
proper array sizes as defined in INCLUDE.F are incorporated. Failure to do so can lead to execution errors. In addition, the 
user must supply a file containing the user-supplied FORTRAN subroutines. A compiled version of this file must be linked to 
Water before execution. The required user-supplied subroutines are:

1. BNDFCN – This subroutine specifies the time-varying forcing function for each of the boundary segments. The forcing 
function can represent head, flux, or unit gradient boundary conditions.

2. H_INIT – This subroutine specifies the initial pressure head distribution for each cell.
3. OUTPUT – This subroutine generates the output. Pressure head, volumetric water content, and fluxes are available. The 

user must specify the desired format.
4. VG_PROP – This subroutine specifies the van Genuchten properties (residual and saturated water contents, saturated 

hydraulic conductivity, and curve fitting parameters α and n) for each object specified in the user-supplied input file. The 
units of the properties must be consistent with the other user input.

Examples of the user-supplied subroutines are listed in Section 2.3.1. See the comment statements at the beginning of each 
subroutine for further content information.

During execution, Water will ask for the name of the processed geometry file (i.e., the user-named output file from Water-
map), the name of the output file from Water (contains the output as defined by the user in the OUTPUT subroutine listed in 
Section 2.3.1), and variable time-step information. The user is asked for the initial time step size, the maximum allowable 
time-step size (to be used by the adaptive time-step algorithm), and the number n of output times. The user is then asked to 
specify the n output times. The program will terminate execution after output for the last output time. The user-supplied sub-
routine OUTPUT will be called at each output time. 

Additional information, such as cumulative water flow through the boundary and object segments, will be printed to the screen 
for each output time. Segment numbers correspond to the order of the segment definition (i.e., first user-defined segment is 
segment one and first user defined internal object is object one) in the user-supplied geometry file. The difference between the 
net flow into the model domain and into all of the objects represents the mass balance error (i.e., the global mass balance 
error). When a node becomes saturated, mass balance may no longer be conserved for a cell. An estimate of the error due to 
saturated cells is also printed. The net (i.e., total) water flow through all segments that are not on the boundary is also printed. 
Since water flowing out of one object flows into the adjacent object, the net flow through each of the corresponding objects' 
segments should be equal and opposite. The net water flow through all object segments (excluding those on the boundary) 
should thus be zero. This value is provided as another check on mass balance.

2.3.1 User-Supplied Subroutines for Water Corresponding to Figure 2.1
      SUBROUTINE BNDFCN (TIME,NBS,FORCE)
C
C         This is a user-supplied subroutine defining the forcing
NUREG/CR-6366 6



 

User's Manual

  
C         function for each of the NBS boundary segments as a 
C         function of time. Note that the forcing function can
C         represent head (type 1), flux (type 2), or unit gradient 
C         (type 3). If a unit gradient boundary is specified for a 
C         segment (type 3), FORCE for this 
C         segment is not used and does not need to be defined.
C
C         The arguments for this subroutine are 
C                TIME - Current time (supplied by calling routine)
C                       in units consistent with the user-defined
C                       input
C                 NBS - Number of boundary segments (supplied by
C                       the calling routine)
C               FORCE - Value of boundary forcing function in units
C                       consistent with the user-defined input
C
      DIMENSION  FORCE(NBS)
C
C ***   In this example, the upper boundary (i.e., the first two
C ***   segments) is a flux boundary (type 2) with the flux specified.
C ***   The forcing function for the remainder of boundary segments are 
C ***   zero (i.e., zero head for segment 9 and zero flux for the 
C ***   remaining segments).
C 
C
      FORCE(1) = 2.835E-4
      FORCE(2) = 2.835E-4

      DO I=3,NBS
         FORCE(I) = 0.0
      END DO

      RETURN
      END

      SUBROUTINE H_INIT(H,NX,NY,XG,YG,XCG,YCG)
C
C         This is a user-supplied subroutine defining the 
C         initial pressure distribution.
C  
C                   H - Initial pressure head defined by user
C                       in units consistent with the user 
C                       input.
C                  NX - Number of cells in x direction
C                       (supplied by calling routine)
C                  NY - Number of cells in y direction
C                       (supplied by calling routine)
C                  XG - x coordinates of cell sides (vector)
C                       (supplied by calling routine)
C                  YG - y coordinates of cell sides (vector)
C                       (supplied by calling routine)
C                 XCG - x coordinates of cell centroids (array)
C                       (supplied by calling routine)
C                 YCG - y coordinates of cell centroids (array)
C                       (supplied by calling routine)
C
      DIMENSION   H(NX,NY), XG(NX+1), YG(NY+1)
      DIMENSION   XCG(NX,NY), YCG(NX,NY)        
C
C ***   In this example, a water table is assumed to exist at 
7 NUREG/CR-6366



 

User's Manual

   
C ***   the lower boundary (i.e., y=YG(NY+1)) with unit gradient
C ***   initial pressure above. 
C 
      DO J=1,NY
         DO I=1,NX
            H(I,J) = -ABS(YG(NY+1) - YCG(I,J))
         END DO
      END DO

      RETURN
      END

      SUBROUTINE OUTPUT (NFILEOUT,TIME,H,THETA,FLUXX,FLUXY,NX,NY,
     .                   XG,YG,XCG,YCG)
C
C         This is a user-supplied subroutine defining the output
C         format. All arguments are input from the main program. The
C         user should not change the values of any of these arguments.
C
C            NFILEOUT - Unit number for output file 
C                       (supplied by calling routine)
C                TIME - Current time
C                       (supplied by calling routine)
C                   H - Pressure head
C                       (supplied by calling routine)
C               THETA - Volumetric water content
C                       (supplied by calling routine)
C               FLUXX - Water flux through cell sides in x-dir
C                       (supplied by calling routine)
C               FLUXY - Water flux through cell sides in y-dir
C                       (supplied by calling routine)
C                  NX - Number of cells in x direction
C                       (supplied by calling routine)
C                  NY - Number of cells in y direction
C                       (supplied by calling routine)
C                  XG - x coordinates of cell sides (vector)
C                       (supplied by calling routine)
C                  YG - y coordinates of cell sides (vector)
C                       (supplied by calling routine)
C                 XCG - x coordinates of cell centroids (array)
C                       (supplied by calling routine)
C                 YCG - y coordinates of cell centroids (array)
C                       (supplied by calling routine)
C
      DIMENSION   H(NX,NY), THETA(NX,NY), XG(NX+1), YG(NY+1)
      DIMENSION   XCG(NX,NY), YCG(NX,NY), FLUXX(NX-1,NY), FLUXY(NX,NY-1)   
      DIMENSION   WORK(200,200)    
C
C
C ***     Change the following to a format of your choice. In the 
C ***     following example, heads at I = 49 from j = 40 to 90
C ***     are outputted as a function of depth below an upper boundary
C ***     at Y1 to the screen and to the output file. 

C
      I = 49

      WRITE(*,*) 'TIME, X = ', TIME, (XG(I-1)+XG(I))/2.0

      WRITE(*,*) 'Y, Head'
NUREG/CR-6366 8



 

User's Manual

  
       
      Y1 = (YG(40)+YG(41))/2.0

      DO J=40,90
         WRITE(*,*) YCG(I,J) - Y1, H(I,J)
      END DO

      WRITE(NFILEOUT,*) 'TIME, X = ', TIME, (XG(I-1)+XG(I))/2.0

      WRITE(NFILEOUT,*) 'Y, Head'
       
      DO J=40,90
         WRITE(NFILEOUT,*) YCG(I,J) - Y1, H(I,J)
      END DO

      RETURN
      END

      SUBROUTINE VG_PROP (N,IOBJ,X,Y,THEAR,THEAS,ALPHA,AN,AKS)
C
C         This is a user-supplied subroutine defining the van Genuchten
C         properties for each object in units consistent with the rest
C         of the user input. The subroutine is supplied with the object
C         number and the x, y coordinates of the centroid of each cell which
C         contains that object. The user should return the corresponding
C         vectors of the van Genuchten properties. Notes: 1) While a centroid 
C         will never lie outside a boundary, it may lie outside an object 
C         when the object intersects a small part of the cell. The user should
C         provide the corresponding van Genuchten properties even though
C         the centroid x, y coordinates may be just outside the object's 
C         polygon. The program uses these values to estimate average values 
C         for that region at cell interfaces within the object. 
C         2) This routine will be called only during the initialization of 
C         the solver. 
C
C                   N - Number of cells containing the object
C                       (supplied by calling routine)
C                IOBJ - Object number 
C                       (supplied by calling routine)
C                X, Y - Vectors of coordinates of centroid of each cell 
C                       containing the object 
C                       (supplied by calling routine)
C               THEAR - Vector of corresponding residual water contents
C                       (user defined)
C               THEAS - Vector of corresponding saturated water contents
C                       (user defined)
C               ALPHA - Vector of corresponding V-G alpha parameters
C                       (user defined)
C                  AN - Vector of corresponding V-G n parameters
C                       (user defined)
C                 AKS - Vector of corresponding saturated hydraulic 
C                       conductivities (user defined)
C
C
      DIMENSION  X(N), Y(N), THEAR(N), THEAS(N), ALPHA(N), AN(N), AKS(N)
C
C
C ***    In the example that follows, five objects are defined with the 
C ***    properties taken as constant across each object. Cell centroids
9 NUREG/CR-6366



 

User's Manual

   
C ***    are provided if the user wishes to define spatially dependent
C ***    properties across an object.
C
C
      IF (IOBJ .EQ. 1) THEN     
C
C ***    Clayey sand
C
         DO I=1,N
            THEAR(I) = 0.21
            THEAS(I) = 0.30
            ALPHA(I) = 0.107
            AN(I) = 3.0
            AKS(I) = 3.968E-4
         END DO

      ELSE IF (IOBJ .EQ. 2) THEN
C
C ***    Gravel
C
         DO I=1,N
            THEAR(I) = 0.014
            THEAS(I) = 0.51
            ALPHA(I) = 107.8
            AN(I) = 2.661
            AKS(I) = 5.244E3
         END DO

      ELSE IF (IOBJ .EQ. 3) THEN
C
C ***    Gravel
C
         DO I=1,N
            THEAR(I) = 0.014
            THEAS(I) = 0.51
            ALPHA(I) = 107.8
            AN(I) = 2.661
            AKS(I) = 5.244E3
         END DO

      ELSE IF (IOBJ .EQ. 4) THEN
C
C ***    Concrete/waste
C
         DO I=1,N
            THEAR(I) = 0.08
            THEAS(I) = 0.4
            ALPHA(I) = 0.192
            AN(I) = 1.082
            AKS(I) = 2.835E-5
         END DO

      ELSE IF (IOBJ .EQ. 5) THEN
C
C ***    Sand
C
         DO I=1,N
            THEAR(I) = 0.045
            THEAS(I) = 0.37
            ALPHA(I) = 2.082
            AN(I) = 2.080
            AKS(I) = 8.504E+1
NUREG/CR-6366 10



 

User's Manual

  
         END DO

      ELSE

         WRITE(*,*) ' Information for an object number was requested'
         WRITE(*,*) ' which was not supplied by the user.'
         STOP ' Execution terminated'
 
      END IF

      RETURN
      END
11 NUREG/CR-6366



 

User's Manual

  
NUREG/CR-6366 12



                                                                    
3.0 Theory
3.1 Overview

The two-dimensional pressure-based form of Richards equation can be written as: 

(3.1)

where

h = pressure head
x = spatial coordinate increasing from left to right
y = spatial coordinate increasing from top to bottom
K = hydraulic conductivity, assumed to be isotropic and a unique function of pressure head
C = specific water capacity, defined as 
θ = volumetric water content, assumed to be a unique function of pressure head.

The water retention and hydraulic conductivity models used in the solution of Equation 3.1 are those of van Genuchten 
(1980b):

(3.2)

(3.3)

where

Se = effective saturation
θr = residual volumetric water content
θs = saturated volumetric water content
KS = saturated hydraulic conductivity
m = 1 – 1/n

α, n = model fitting parameters.

By accounting for the effect of the irregular shape of objects on the cell-to-cell hydraulic conductivities, a simple finite volume 
approach can be used to solve Equation 3.1 on a rectangular grid. In this and the following two chapters, we present the under-
lying theory and implementation of this solution.

3.2 Mass Balance

Consider the rectangular grid and the polygon objects shown in Figure 3.1. As stated above, x is measured to the right, and y is 
measured down.  Ai,jk represents the area which object k covers in cell i,j. The length of the side between the cells i,j and i+1,j 
covered by a polygon segment of object k on both sides is Lxki+1/2,j. Lxk,k*i+1/2,j is the length of the side of a cell covered 
by object k that is adjacent to object k* (see Figure 3.1). Considering the lengths Lxki+1/2,j and Lxk,k*i+1/2,j  separately sim-
plifies the computer code for the evaluation of the object-to-object water movement.

The pressure head gradient anywhere along the side between cell i,j and i+1,j is approximated by (hi+1,j - hi,j) / ∆x, where hij 
is the average pressure head in cell i,j. Using this notation, the water movement per unit time through the side between cell i,j 
and i+1,j, which are both at least partially covered by object k, is 

(3.4)

where  is the flux in object k across the side between cell i,j and i+1,j. In the present work, the unsaturated hydraulic 
conductivity at a cell interface i+1/2 is evaluated as the arithmetic average of the hydraulic conductivities at the heads associ-
ated with the cells i and i+1 for object k. The ∆xi+1/2 represents the x direction distance between the centroids of those parts 

C–
t∂

∂h
x∂

∂ K
x∂

∂h
 
 

y∂
∂ K

y∂
∂h

K– 
 +=

C θ∂ h∂⁄=

Se

θ θr–

θs θr–
---------------- 1 α h( )n+[ ]

m–
= =

K KSSe
1 2⁄

1 1 Se
1 m⁄–( )

m
–[ ]

2

=

q Lx K Lx
h h

x
k

i j
k

i j
k

i j
k

i j
i j i j

i

+ + + +
+

+

= −
−

1 2 1 2 1 2 1 2
1

1 2

/ , / , / , / ,
, ,

/∆

qk
i 1 2 j,⁄+
13 NUREG/CR-6366



Theory
of the cells i,j and cell i+1,j within the simulation domain. The water movement per unit time between objects k and k* for an 
object segment that lies along a cell side at i+1/2 is 

(3.5)

where Kk,k*i+1/2,j is the arithmetic average of the hydraulic conductivities evaluated at the heads associated with cells i and 
i+1/2 for the corresponding objects. The water movement per unit time from cell i,j to cell i+1,j for all objects covering this 
cell side is

(3.6)

where nobs is the number of objects covering cell i,j and nsegs is the number of polygon segments along the cell side. Like-
wise, the water movement per unit time for all objects covering the interface between cell i,j and i,j+1 is 

(3.7)

The first and third terms in Equation 3.7 represent the water movement in the vertical direction under a gravitational gradient 
of unity. The time rate of change in water in cell i,j is given by

(3.8)

where t designates time,  is the volumetric water content of object k in cell i,j, and  is the specific water capacity of 
object k in cell i,j. Note, the average head of each object in cell i,j is assumed to be hi,j. Performing a mass balance for all water 
fluxes into the i,j cell leads to

  

Object k

Object k*

Cell i,j
Ai,j

k

Lxk
i+1/2,j

Lyk
i,j-1/2 Lxk,k*

i+1/2,j

x

y

Figure 3.1. Polygon objects and computational grid

q Lx K Lx
h h

x
k k

i j
k k

i j
k k

i j
k k

i j
i j i j

i

, *
/ ,

, *
/ ,

, *
/ ,

, *
/ ,

, ,

/

+ + + +
+

+

= −
−

1 2 1 2 1 2 1 2
1

1 2∆

Q K Lx
h h

x
K Lx

h h

x

K Lx

i j
k

i j
k

i j
i j i j

ik

n
k k

i j
k k

i j
i j i j

ik k

n

k
i j

k

objs segs

+ + +
+

+=
+ +

+

+=

+

= −
−

−
−

= −

∑ ∑1 2 1 2 1 2
1

1 21

1 2 1 2
1

1 21

1 2

/ , / , / ,
, ,

/

, *
/ ,

, *
/ ,

, ,

/, *

/ ,

∆ ∆

ii j

k

n
i j i j

i

k k
i j

k k
i j

k k

n
i j i j

i

objs segsh h

x
K Lx

h h

x
+

=

+

+

+ +
=

+

+
∑ ∑







−

−






−

1 2

1

1

1 2

1 2 1 2

1

1

1 2

/ ,
, ,

/

, *
/ ,

, *
/ ,

, *

, ,

/∆ ∆

Q K Ly K Ly
h h

y

K Ly

i j
k

i j
k

i j

k

n
k

i j
k

i j

k

n
i j i j

j

k k
i j

k k
i j

k k

objs objs

, / , / , / , / , /
, ,

/

, *
, /

, *
, /

, *

+ + +
=

+ +
=

+

+

+ +

=






−







−

+

∑ ∑1 2 1 2 1 2

1

1 2 1 2

1

1

1 2

1 2 1 2

∆

==
+ +

=

+

+
∑ ∑







−







−

1

1 2 1 2

1

1

1 2

n
k k

i j
k k

i j

k k

n
i j i j

j

segs segs

K Ly
h h

y
, *

, /
, *

, /

, *

, ,

/∆

A
t

A C
h

ti j
k i j

k

k

n

i j
k k

i j

k

n
i j

objs objs

,
,

, ,
,∂θ

∂
∂
∂= =

∑ ∑=





1 1

θi j,
k Ci j,

k

NUREG/CR-6366 14



Theory
(3.9)

where nobjs and nsegs may take on different values for each of the 4 cell sides. We discretize Equation 3.9 over time implicitly, 
evaluating all coefficients at the old time step m.

A C
h

t
K Lx

h h

x

K Lx

i j
k k

i j

k

n
i j k

i j
k

i j

k

n
i j i j

i

k k
i j

k k
i j

k k

n

objs objs

segs

, ,
,

/ , / ,
, ,

/

, *
/ ,

, *
/ ,

, *

=
− −

=

−

−

− −
=

∑ ∑

∑







= −







−

−





1

1 2 1 2

1

1

1 2

1 2 1 2

1

∂
∂ ∆


−

+






−

+






−

−

−

+ +
=

+

+

+ +
=

+

∑

∑

h h

x

K Lx
h h

x

K Lx
h

i j i j

i

k
i j

k
i j

k

n
i j i j

i

k k
i j

k k
i j

k k

n
i j

objs

segs

, ,

/

/ , / ,
, ,

/

, *
/ ,

, *
/ ,

, *

,

1

1 2

1 2 1 2

1

1

1 2

1 2 1 2

1

1

∆

∆

hh

x

K Ly
h h

y

K Ly
h h

y

i j

i

k
i j

k
i j

k

n
i j i j

j

k k
i j

k k
i j

k k

n
i j i j

j

objs

segs

,

/

, / , /
, ,

/

, *
, /

, *
, /

, *

, ,

∆

∆

∆

+

− −
=

−

−

− −
=

−

−

−






−

−






−

∑

∑

1 2

1 2 1 2

1

1

1 2

1 2 1 2

1

1

1//

, / , /
, ,

/

, *
, /

, *
, /

, *

, ,

/

,

2

1 2 1 2

1

1

1 2

1 2 1 2

1

1

1 2

+






−

+






−

+

+ +
=

+

+

+ +
=

+

+

−

∑

∑

K Ly
h h

y

K Ly
h h

y

K

k
i j

k
i j

k

n
i j i j

j

k k
i j

k k
i j

k k

n
i j i j

j

k
i j

objs

segs

∆

∆

11 2 1 2

1

1 2 1 2

1

1 2 1 2

1

1 2

/ , / , / , /

, *
, /

, *
, /

, *

, *
, /

, *
,

Ly K Ly

K Ly

K Ly

k
i j

k

n
k

i j
k

i j

k

n

k k
i j

k k
i j

k k

n

k k
i j

k k
i

objs objs

segs

−
=

+ +
=

− −
=

+

∑ ∑

∑







−








+







− jj

k k

nsegs

+
=

∑






1 2

1

/

, *
15 NUREG/CR-6366



Theory
 (3.10)

where nobjs and nsegs may take on different values for each of the four cell sides. The symbol ' is used to denote that hi,j' is a 
temporary approximation for the head for the end of a time step. A technique analogous to the flux updating technique of Kirk-
land et al. (1992) will be used to refine this approximation so that the end-time step approximation on head is globally mass 
conservative (see Kirkland et al., 1992). This is presented in a latter section.

3.3 Boundary Conditions

For those cells that contain one or more boundary segments, a source term can be added to Equation 3.10 to account for the 
flux into the cell through each boundary segment within that cell.

A C
h h

t
K Lx

h h

x

K Lx

k
i j

k
i j

m

k

n
i j i j

m
k

i j
m k

i j

k

n
i j i j

i

k k
i j

m k k
i j

k

objs objs

, ,
, ,

/ , / ,
, ,

/

, *
/ ,

, *
/ ,

,

' ' '

=
− −

=

−

−

− −

∑ ∑






−

= −






−

−

1

1 2 1 2

1

1

1 2

1 2 1 2

∆ ∆

kk

n
i j i j

i

k
i j

m k
i j

k

n
i j i j

i

k k
i j

m k k
i j

k k

segs

objs

h h

x

K Lx
h h

x

K Lx

*

, ,

/

/ , / ,
, ,

/

, *
/ ,

, *
/ ,

, *

' '

' '

=

−

−

+ +
=

+

+

+ +
=

∑

∑







−

+






−

+

1

1

1 2

1 2 1 2

1

1

1 2

1 2 1 2

∆

∆

11

1

1 2

1 2 1 2

1

1

1 2

1 2 1 2

1

n
i j i j

i

k
i j

m k
i j

k

n
i j i j

j

k k
i j

m k k
i j

k k

n

segs

objs

segs

h h

x

K Ly
h h

y

K Ly

∑

∑







−

−






−

−

+

+

− −
=

−

−

− −
=

, ,

/

, / , /
, ,

/

, *
, /

, *
, /

, *

' '

' '

∆

∆

∑∑

∑

∑







−

+






−

+




−

−

+ +
=

+

+

+ +
=

h h

y

K Ly
h h

y

K Ly

i j i j

j

k
i j

m k
i j

k

n
i j i j

j

k k
i j

m k k
i j

k k

n

objs

segs

, ,

/

, / , /
, ,

/

, *
, /

, *
, /

, *

' '

' '

1

1 2

1 2 1 2

1

1

1 2

1 2 1 2

1

∆

∆





−

+






−








+

+

+

− −
=

+ +
=

− −

∑ ∑

h h

y

K Ly K Ly

K Ly

i j i j

j

k
i j

m k
i j

k

n
k

i j
m k

i j

k

n

k k
i j

m k k
i j

k

objs objs

, ,

/

, / , / , / , /

, *
, /

, *
, /

,

' '1

1 2

1 2 1 2

1

1 2 1 2

1

1 2 1 2

∆

kk

n

k k
i j

m k k
i j

k k

n

segs

segs

K Ly

*

, *
, /

, *
, /

, *

=

+ +
=

∑

∑








−







1

1 2 1 2

1

NUREG/CR-6366 16



Theory
(3.11)

where nobjs and nsegs may take on different values for each of the four cell sides, q
l
 is the water flux through boundary seg-

ment l , and nbndsegs is the number of boundary segments within or along cell i,j. To evaluate the flux through each boundary 
segment into a cell, consider Figure 3.2. In this figure, Bl represents the length of each segment within the cell (not the total 
length of each segment), and nl represents the outward unit normal vector for each segment. ∆z represents the smallest dis-
tance between the boundary segment and the centroid of the part of the cell within the simulation domain. This information is 
used for each of the three boundary condition types as follows. 

Head Boundary Conditions

Given that the head for boundary segment l is given by hl(t), the water flux into the cell i,j through the boundary segment l, des-
ignated ql, is approximated by

A C
h h

t
K Lx

h h

x

K Lx

k
i j

k
i j

m

k

n
i j i j

m
k

i j
m k

i j

k

n
i j i j

i

k k
i j

m k k
i j

k

objs objs

, ,
, ,

/ , / ,
, ,

/

, *
/ ,

, *
/ ,

,

' ' '

=
− −

=

−

−

− −

∑ ∑






−

= −






−

−

1

1 2 1 2

1

1

1 2

1 2 1 2

∆ ∆

kk

n
i j i j

i

k
i j

m k
i j

k

n
i j i j

i

k k
i j

m k k
i j

k k

segs

objs

h h

x

K Lx
h h

x

K Lx

*

, ,

/

/ , / ,
, ,

/

, *
/ ,

, *
/ ,

, *

' '

' '

=

−

−

+ +
=

+

+

+ +
=

∑

∑







−

+






−

+

1

1

1 2

1 2 1 2

1

1

1 2

1 2 1 2

∆

∆

11

1

1 2

1 2 1 2

1

1

1 2

1 2 1 2

1

n
i j i j

i

k
i j

m k
i j

k

n
i j i j

j

k k
i j

m k k
i j

k k

n

segs

objs

segs

h h

x

K Ly
h h

y

K Ly

∑

∑







−

−






−

−

+

+

− −
=

−

−

− −
=

, ,

/

, / , /
, ,

/

, *
, /

, *
, /

, *

' '

' '

∆

∆

∑∑

∑

∑







−

+






−

+




−

−

+ +
=

+

+

+ +
=

h h

y

K Ly
h h

y

K Ly

i j i j

j

k
i j

m k
i j

k

n
i j i j

j

k k
i j

m k k
i j

k k

n

objs

segs

, ,

/

, / , /
, ,

/

, *
, /

, *
, /

, *

' '

' '

1

1 2

1 2 1 2

1

1

1 2

1 2 1 2

1

∆

∆





−

+






−








+

+

+

− −
=

+ +
=

− −

∑ ∑

h h

y

K Ly K Ly

K Ly

i j i j

j

k
i j

m k
i j

k

n
k

i j
m k

i j

k

n

k k
i j

m k k
i j

k

objs objs

, ,

/

, / , / , / , /

, *
, /

, *
, /

,

' '1

1 2

1 2 1 2

1

1 2 1 2

1

1 2 1 2

∆

kk

n

k k
i j

m k k
i j

k k

n

l
l

n

l

segs

segs

bndsegs

K Ly

q B

*

, *
, /

, *
, /

, *

=

+ +
=

=

∑

∑

∑








−







+







1

1 2 1 2

1

1

17 NUREG/CR-6366



Theory
(3.12)

where Kli,jm represents the unsaturated hydraulic conductivity for the internal object adjacent to this boundary segment evalu-
ated at hl(t). Gravity is accounted for by the dot product between the outward unit normal nl for segment l and the downward 
pointed unit vector j. 

Flux Boundary Conditions

In this case, q
l
(t)  is specified explicitly by the user and can be used directly. 

(3.13)

Unit Gradient Boundary Conditions

Given a unit gradient (i.e., hl = hi,j in Equation 3.12) for boundary segment l, the water flux into the cell i,j through the bound-
ary segment l is approximated by 

(3.14)

3.4 Cells Fully Outside the Boundary

If the boundary polygon does not completely cover the computational grid, then there may be cells in the grid that are fully 
outside the boundary. To maintain the structure of the matrix equations, we include all cells of the rectangular grid in the com-
putation, including those fully outside the boundary polygon. We arbitrarily apply the following condition to these cells:

(3.15)

While these outside cells are now included in the matrix solution, they have no effect on those cells within the boundary poly-
gon and have no effect on the number of iterations required by the iterative equation solver. They do require that the iterative 
solver loop through these outside cells. However, the effort required to loop through these cells is small compared to the sav-
ings in CPU gained because the matrix is well-structured.

    

Bl+1

nl

nl+1

Cell i,j

∆zl

∆zl+1

Bl

Figure 3.2. Two boundary segments

q K
h t h

zl
l
i j

m l
m

i j
l=

−
− ⋅







+

,
,( ) '1

∆
n j

q q tl l
m= +( )1

q Kl
l
i j

m
l= − ⋅, n j

hi j, ' = 0
NUREG/CR-6366 18



Theory
3.5 Mass Correction

To enhance the global mass balance of the scheme, we use a flux updating modification. Following Kirkland et. al. (1992), the 
hi,j' at the end of the time step are used in Equations 3.6, 3.7, and 3.12 through 3.14 to evaluate the water movement into a cell 
during that time step. These are then used to re-evaluate the water content in a cell at the end of a time step given the water con-
tent at the beginning of the time step. 

(3.16)

where θ is the average volumetric water content for the cell and Ai,j is the area of the cell contained within the boundary. A 
slightly different approach can be used since the right-hand side of Equation 3.16 is the same as the right-hand side of Equa-
tion 3.11. We note that

(3.17)

After the hi,j' are evaluated from the system of equations given by Equations 3.11 through 3.15, Equation 3.17 can be used to 
evaluate the corresponding average volumetric water content. Evaluating the water content by Equation 3.17 is equivalent to 
evaluating it by Equation 3.16, and the resulting water content is thus conservative (i.e., a global mass balance has been main-
tained). Once the average volumetric water content for a cell has been evaluated, the corresponding head at the end of the time 
step must be re-evaluated. This is done by noting that the sum of water over each object in a cell is equal to the total water in 
that cell. Using the water retention relations Θk(h) for each object k in the cell to evaluate the total water in that cell at the end 
of the time step gives

(3.18)

For cells with only one object, the water retention relation can be used to explicitly solve for hi,jm+1, given the water content. 
For cells with multiple objects, Equation 3.18 is implicit in hi,jm+1 and must be solved through iteration. Here we use a New-
ton-Raphson algorithm. Fortunately, the number of cells thatcontain multiple objects is generally small relative to those that do 
not, and the resulting computational burden for the multiple object cells is relatively small. Note that hi,jm+1 generally will not 
be equal to hi,j'. However, the hi,jm+1 will be consistent with the total water mass in the cell.

The above procedure must be modified slightly if saturated cells are present. Following Kirkland et. al. (1992), we use Equa-
tion 3.17 only if that cell, and the cells on either of the four sides, are unsaturated. Otherwise, we set

(3.19)

3.6 Fluxes Between Polygon Objects

Since net water movement across polygon segments is often of interest to the user, such a feature has been added to the present 
algorithm. The approach used here to evaluate the water movement across a polygon segment for a time step is to perform a 
mass balance on those cells containing the segment using the fluxes into and out of the cells. This approach has the advantage 
that it is consistent with the algorithm used for the Richards equation solver. The alternative approach of using estimates of the 
normal gradients and hydraulic conductivities across segments requires estimating these gradients and conductivites. This is 
not a trivial matter and will give fluxes that are not consistent with the water movement as evaluated by the Richards equation 
solver.

A
t

Q Q Q Q

q B

i j
i j

m
i j

m

i j i j i j i j

l
l

n

l

bndsegs

,
, ,

/ , / , , / , /

θ θ+

− + − +

=

−
= − + −

+






∑

1

1 2 1 2 1 2 1 2

1

∆

A
t

A C
h h

ti j
i j

m
i j

m
k

i j
k

i j
m

k

n
i j i j

mobjs

,
, ,

, ,
, ,'θ θ+

=

−
=







−∑

1

1∆ ∆

A h Ak
i j

k
i j

m

k

n

i j i j
m

objs

, , , ,Θ +

=

+( ) =∑ 1

1

1θ

h hi j
m

i j, , '+ =1
19 NUREG/CR-6366



Theory
Consider the cell i,j that contains a polygon segment bounding two objects as shown in Figure 3.1. Performing a mass balance 
for just that part of the cell that contains object k  (see Equation 3.11) and using volumetric water contents for the time storage 
term rather than heads gives:

(3.20)

where  is the number of boundary segments that are contained in cell i,j and bound the object k. Qsegski,j is the total 
water that enters the object through all internal polygon segments (segments aligning with the boundary segments are handled 
by the summation term) that lie within or along the i,j cell or along its sides. Thus, we can solve for the water flow through the 
polygon segments that lie within or along the cell sides but not on the boundaries.

(3.21)

Equation 3.21 gives the total water that moves into object k of cell i,j through the polygon segments that do not lie on a bound-
ary. Multiple segments may lie in or along the cell. To approximate the water movement through just one segment in or along 
a cell, we distribute the Qsegski,j among the segments proportionally, based on the segment lengths. Note that this is an 
approximation. 

Ak
i, j

θi, j
m+1 − θi, j

m

∆t
= −K k

i−1/ 2, j
m Lxk

i−1/ 2, j
hi, j ' −hi−1, j '

∆xi−1/ 2

+K k
i+1/ 2, j

m Lxk
i+1/ 2, j

hi+1, j ' −hi, j '

∆xi+1/ 2

−K k
i, j −1/ 2

m Lyk
i, j −1/ 2

hi, j ' −hi, j −1'

∆yj −1/ 2

+K k
i, j +1/ 2

m Lyk
i, j +1/ 2

hi, j +1' −hi, j '

∆yj +1/ 2

+K k
i, j −1/ 2

m Lyk
i, j −1/ 2 − K k

i, j +1/ 2
m Lyk

i, j +1/ 2

+ ql
l=1

nbndsegsk

∑ Bl







+ Qsegs

k
i, j

nbndsegk

Q A
t

K Lx
h h

x

K Lx
h h

x

K

segs
k

i j
k

i j
i j

m
i j

m
k

i j
m k

i j
i j i j

i

k
i j

m k
i j

i j i j

i

k
i j

, ,
, ,

/ , / ,
, ,

/

/ , / ,
, ,

/

, /

' '

' '

=
−

+
−

−
−

+

+

− −
−

−

+ +
+

+

−

θ θ1

1 2 1 2
1

1 2

1 2 1 2
1

1 2

1 2

∆ ∆

∆

mm k
i j

i j i j

j

k
i j

m k
i j

i j i j

j

k
i j

m k
i j

k
i j

m k
i j

l
l

Ly
h h

y

K Ly
h h

y

K Ly K Ly

q

, /
, ,

/

, / , /
, ,

/

, / , / , / , /

' '

' '

−
−

−

+ +
+

+

− − + +

=

−

−
−

− +

−

1 2
1

1 2

1 2 1 2
1

1 2

1 2 1 2 1 2 1 2

1

∆

∆

nn

l

bndsegsk

B∑






NUREG/CR-6366 20



Theory
3.7 Summary

The solution procedure for a time step is summarized below:

1. Assemble the system of matrix equations for a time step using Equations 3.11 through 3.15. 
2. Solve the resulting set of equations for h' for each cell.
3. Use Equation 3.17 to evaluate a mass-conservative, volumetric water content for each cell at the end of the time step.
4. Use Equation 3.18 to find the corresponding mass-conservative, end-of-time-step head for those cells that are not saturated 

or adjacent (along one of the four sides) to a saturated cell, and use Equation 3.19 for those cells that are saturated or next 
to a saturated cell.

The computational effort to evaluate the various lengths and areas used in the above equations is significant and should not be 
done for each time step. Here we use a preprocessor to evaluate these lengths and areas given the geometry defined by the user. 
These lengths and areas are then provided to the Richards equation solver, which implements steps 1 through 4 above. 

The implementation of the preprocessor and the water solver are discussed in the following two chapters.
21 NUREG/CR-6366



Theory
NUREG/CR-6366 22



4.0 Preprocessor
4.1 Overview

The preprocessor Watermap utilizes the user-supplied geometry file to map the problem geometry onto the computational 
grid. Watermap outputs this information in an ASCII file that is named by the user. Watermap also outputs a FORTRAN 
include file (named INCLUDE.F) that defines the array sizes used in the Richards equation solver, Water. The program flow 
between the main modules of Watermap is discussed in this chapter. Since this discussion follows the actual program struc-
ture closely, it should be used along with a program listing if the user wishes to further study the implementation of the prepro-
cessor. Listed below is the program flow for the main routine and a discussion of several of the larger, multipurpose 
subroutines (i.e., those denoted in bold). 

4.2 MAIN

The main routine initializes the arrays and controls basic program flow. The input file is processed in the order that it is read. 
First, the underlying computational grid is read from the user-supplied geometry file, processed, and written to the output file. 
Secondly, the boundary polygon is read, processed, and written to the output file. Next, each of the user-defined internal 
objects is read, processed, and written to the output file. Next, information on multiple objects in single cells is written to the 
output file. Finally, the FORTRAN include file is created. The specific tasks performed by the MAIN routine are listed below 
in the order of their execution. 

• Initialize arrays, open input and output files.
• Read computational mesh information from input file (x-direction first), check for consistency, evaluate grid side loca-

tions (XG, YG), and write to the output file.
• Read the corner points for the boundary polygon from the input file.
• CALL FILL: Evaluate the area of each cell and the length of cell sides contained within the boundary polygon. The cell 

areas are used to initialize the coverage check arrays. This boundary information is not used by the Richards equation 
solver but is used by the preprocessor to check if the internal objects completely cover the simulation domain.

• CALL BOUNDINFO: Evaluate boundary condition information for the boundary polygon and write the results to the 
output file. This information is used for the evaluation of Equations 3.12 through 3.14. This routine also outputs the cen-
troids of all cells and the indices of those cells outside the simulation domain for use by Equation 3.15.

• CALL ADDCHAR: Add boundary polygon characters to character output map. This object map is printed at the end of 
the preprocessing and shows the user which cells are covered by which polygon objects.

• Read the number of internal polygon objects, NOBJ.
• Loop through each internal polygon.

• Read the internal polygon corner points from the input file and re-orient if necessary. The evaluation of outward nor-
mals in BNDFLUX requires a consistent orientation. 

• CALL FILL: Evaluate the area of each cell and the length of cell sides contained within the internal polygon. This 
information is used by Equation 3.11.

• CALL SUBTRACT: Subtract the cell areas evaluated from the check arrays and store the results in the check arrays to 
see if the polygon is fully contained within the boundary. If the polygon overlaps the boundary or a previous internal 
polygon, then the check array will contain negative values and an error message will be printed to the screen. Only the 
cell areas (not the cell side lengths) are updated and checked.

• CALL ADDCHAR: Add polygon characters to the appropriate location in the character output map.
• CALL ADDOBJ: Identify those cells with multiple objects and store the appropriate object information in storage 

arrays. This information will be written to the output file after this loop is completed and is used by the Richards equa-
tions solver to evaluate Equation 3.18.

• CALL BNDFLUX: Evaluate cell information to be used for interobject flux calculations.
• CALL OBJECTOUT: Output the remaining information for the present polygon.

• End loop through internal polygon objects.
• CALL OUTPUT: Output the character array showing the location of all objects on the computational mesh.
• CALL COVERED: Check to see that the entire simulation domain is covered by the internal objects. This is done by test-

ing whether the check array is near zero.
• CALL OBJECTNROUT: Outputs the information processed and stored by ADDOBJ for use in evaluating Equation 3.18.
23 NUREG/CR-6366



Preprocessor
• Evaluate the array sizes for the water solver and output these as a FORTRAN include file.
• Stop execution of the preprocessor.

4.3 BNDFLUX

This subroutine evaluates the information required by the Richards equation solver to evaluate the water transferred between 
internal objects during the simulation. This routine is called separately for each internal polygon. Specific tasks and their order 
are listed below.

• Initialize the cell side length arrays to zero.
• Loop through each segment of the polygon.

• Evaluate whether the polygon segment intersects cells (ISEGTYPE=1), or if it lies along vertical (ISEGTYPE=2) cell 
sides, or horizontal (ISEGTYPE=3) cell sides.

• If the segment intersects cells, then
• Loop through all cells within the loop bounds established in FILL for this object.

• Define the x-y coordinates of the four corner points for a cell.
• Evaluate the area of the cell and the cell side lengths.
• CALL SEGMENTS: This routine uses the incoming vectors of x-y (stored in X and Y) coordinates of the poly-

gon segments, evaluates if and where the polygon segments intersect cell sides, and expands the coordinate 
vectors to include these intersection points. This expanded vector is stored in XS, YS. The expanded polygon 
has the same shape, but includes collinear points associated with the cell intersections, which greatly simplifies 
the following operations.

• Loop through all the segments defined by XS, YS and if the segment lies in the cell but not on the boundary, 
evaluate and store the segment length of that part of the segment contained within the cell. 

• End loop
• Else if the segment lies along a vertical cell side, then

• Loop through all cells within loop bounds along appropriate vertical.line
• Evaluate which side of the cell and segment area for that part of the segment that lies along the cell.

• End loop through cells along vertical.line
• Else if the segment lies along a horizontal cell side, then

• Loop through all cells within loop bounds along appropriate horizontal.line
• Evaluate which side of the cell and segment area for that part of the segment that lies along the cell.

• End loop through cells along horizontal.line
• End if
• Write results to the output file for all cells that contained that segment.

• End loop through polygon segments and return to MAIN.

4.4 BOUNDINFO

This subroutine evaluates boundary condition information for the boundary polygon and writes the results to the output file. 
This information is used for the evaluation of Equations 3.12 through 3.14. This routine also evaluates and outputs the cen-
troids of all cells and the indices of those cells outside the simulation domain for use by Equation 3.15. Specific tasks and their 
order are listed below.

• Evaluate default centroids for all cells assuming the polygon covers all cells. Centroids of cells not completely covered by 
the boundary polygon are corrected below.

• Loop through each cell within the loop limits. Use loop limits evaluated from previous call to FILL for the boundary 
polygon.

• Define the x-y coordinates of the four corner points for a cell.
• Evaluate the area of the cell and the cell side lengths.
NUREG/CR-6366 24



Preprocessor
• CALL SEGMENTS: This routine uses the incoming vectors of x-y coordinates (X and Y) of the polygon segments, 
evaluates if and where the polygon segments intersect cell sides, and expands the coordinate vectors to include these 
intersection points. This expanded vector is stored in XS, YS. The expanded polygon has the same shape, but includes 
collinear points associated with the cell intersections which greatly simplifies the following operations.

• Project the coordinates of XS, YS that lie outside the cell onto the cell sides and store the results in XT, YT. The pro-
jection is performed such that the new polygon XT, YT represents the intersection of the cell area and the incoming 
polygon object area. 

• If the cell is next to or includes the boundary, then
• CALL CENTROIDS to correct the centroid location of that part of the cell within the polygon XT, YT.
• CALL BNDINFO to evaluate the information required for Equations 3.12 and 3.14 such as the cell area, ∆z, and 

the normal vector n
l.
 BNDINFO loops through each boundary segment XS, YS and evaluates this information for 

each segment in the cell or each segment along the four cell sides. 
• End if

• End loop through cells and return to MAIN.

4.5 FILL

This subroutine evaluates internal cell information for the incoming polygon object including cell areas and cell side lengths 
contained within the object. Given the incoming polygon, this routine evaluates loop limits to determine which cells to loop 
through. The routine loops through each cell, evaluates the common area between the cell and the polygon, and evaluates the 
corresponding cell side lengths for those cells with non-zero common areas. Specific tasks and their order of performance are 
listed below:

• Initialize cell areas and the x-direction and y-direction cell side lengths to zero.
• Evaluate the loop limits for the smallest rectangular region that fully contains the polygon object. For small objects, defin-

ing loop limits results in very substantial savings in CPU time.
• Loop through each cell within the loop limits.

• Define the x-y coordinates of the four corner points for the cell.
• Evaluate the total area of the cell and the cell side lengths.
• CALL SEGMENTS: This routine uses the incoming vectors of X, Y coordinates of the polygon segments, evaluates if 

and where the polygon segments intersect cell sides, and expands the coordinate vectors to include these intersection 
points. This expanded vector is stored in XS, YS. The expanded polygon has the same shape, but includes collinear 
points associated with the cell intersections. The expanded polygon greatly simplifies the following operations.

• Project the coordinates of XS, YS that lie outside the cell onto the cell sides and store the results in XT, YT. The pro-
jection is performed such that the new polygon XT, YT represents the intersection of the cell area and the incoming 
polygon object area.

• CALL AREASUB: Evaluate the intersection area by evaluating the area contained within XT, YT. Normalize the 
results by the full cell area and store in AREAC. AREASUB evaluates the area by integrating around the polygon 
sides. Since AREASUB is orientation dependent, the absolute value of the results is evaluated to insure that the area is 
positive.

• If the normalized AREAC just evaluated is unity, then
• the cell sides will be all included within the incoming polygon. Set the normalized lengths of these cell sides to 

unity if they do not lie on the boundary polygon XB, YB. The boundary areas are accounted for elsewhere.
• Else if the normalized AREAC is greater than some small EPS, then

• the normalized lengths of the cell sides within the incoming polygon may not be unity and must be evaluated. 
CALL AREAS to evaluate the normalized length of each of the four cell sides contained within the extended 
incoming polygon XS, YS, but not lying on the boundary polygon XB, YB. The boundary areas are accounted for 
elsewhere.

• End if
• End loop through cells and return to MAIN program. The results from this subroutine will be written to the output file in 

the MAIN program.
25 NUREG/CR-6366



Preprocessor
NUREG/CR-6366 26



5.0 Richards Equation Solver
5.1 Overview

The Richards equation solver Water uses the output file from the preprocessor Watermap and user-supplied subroutines to 
simulate the transient Richards equation in two dimensions. During compilation, the INCLUDE.F file generated by Water-
map is incorporated into the MAIN routine of Water to define array dimensions for the large arrays. This minimizes storage 
requirements, which can reduce CPU time on small or multi-user machines. The program flow between the main modules of 
Water is discussed in this chapter. Users should use the following discussion with the program listing to study the program 
implementation in more detail. Listed below is the program flow for the main routine. This listing also includes brief discus-
sions of the purpose of the called subroutines. Additional discussions of the larger, multi-purpose subroutines (those subrou-
tines denoted in bold) follow the discussion of the main routine. 

5.2 MAIN

The main routine initializes the arrays, inputs the data generated by the preprocessor, and controls basic program flow for the 
Richards equation solver. The specific tasks performed by the MAIN routine and their order are listed below. 

• Ask the user for the input file name and time-step information.
• CALL INPUT: Read the preprocessed file. 
• CALL VG_INIT: Initialize the van Genuchten parameter array. The subroutine VG_INIT loops through the internal poly-

gon objects, calling the user-supplied routine VG_PROP for each object. 
• CALL VG_INIT_NR: Initialize the Newton Raphson van Genuchten parameter array for those cells with multiple 

objects. VG_INIT_NR loops through the multiple object cells in the outer loop and through the objects in that cell in the 
inner loop. The user-supplied routine VG_PROP is called from within the inner loop. This information is used with a 
Newton Raphson iterative method to evaluate Equation 3.18 for head for those cells with multiple objects. While this 
information is also scattered throughout the van Genuchten parameter array initialized by VG_INIT, it is also stored here 
in a format that is computationally more efficient to access. 

• CALL VG_INIT_BND: Initialize the boundary van Genuchten parameter array for those cells that contain a boundary. 
VG_INIT_BND loops only through those cells that contain a boundary segment. The user-supplied routine VG_PROP is 
called from within the loop. These properties are used for flux and unit gradient boundary conditions (i.e., Equations 3.12 
and 3.14). While this information is also scattered throughout the van Genuchten parameter array initialized by VG_INIT, 
it is also stored in a format that is computationally more efficient to access. 

• Using h=0 and h=-1.0E-6, evaluate the corresponding water contents for the cells using the subroutine H_TO_THEA. 
These maximum and minimum water contents are used for adaptive time-step purposes only.

• Call the user-supplied H_INIT routine defining the initial head distribution, initialize miscellaneous dynamic variable 
arrays, and call H_TO_THEA to evaluate the corresponding initial water contents for each cell.

• Loop through each time step.
• Define the head array (HPROP), which is used to evaluate the van Genuchten properties. Since Picard iteration is not 

used, HPROP is set equal to the head at the beginning of the time step. The program can be easily modified to perform 
Picard iteration using HPROP. However, for the test problems considered when developing this program, Picard itera-
tion did not improve the performance of the algorithm. 

• CALL MATRIX: Use Equations 3.11 through 3.15 to assemble the set of linear algebraic equations that defines the 
approximate head h' at the end of the time step.

• CALL CONGRAD: Solve the resulting symmetric set of equations for h ' using a preconditioned conjugate gradient 
solver with an incomplete LDLT preconditioner.

• CALL UPDATE: Use h' in Equation 3.17 to update the water contents at the end of the time step and to update the 
time step size. If the previous time step was found to be too large, return to the top of this loop and re-evaluate the 
equations for the present time step. Otherwise, continue. Using the updated water contents, use Equations 3.18 and 
3.19 to update head for the end of the time step.

• CALL UPDATEFLUX: Update the fluxes between cells.
• CALL UPDATEFLUXSEGS: Update the fluxes through the polygon segments.
• If the present time is at a user-specified output time, CALL OUTPUT (a user-supplied subroutine) and OUTPUT-

FLUX to output the dynamic variables and the net water movement through the various polygon segments. 
• End loop through time steps.
27 NUREG/CR-6366



Richards Equation Solver
• Stop execution of the Richards equation solver.

5.3 MATRIX

This routine is the heart of the Richards equation solver. It assembles the matrix equations object by object, flux by flux. Doing 
so results in a CPU-efficient assembly algorithm that can handle irregularly shaped objects and boundaries. The specific tasks 
performed by MATRIX and their order of execution are listed below. 

• CALL BNDFCN: Call the user-supplied subroutine defining the time dependence of the boundary conditions.
• Set the coefficient matrix to zero.
• Loop through each internal polygon object.

• CALL DYNPROPS to update the coefficients corresponding to mass storage term and the fluxes across cell sides 
within an object, and across cell sides that coincide with the object's polygon boundary. DYNPROPS uses simple 
arithmetic averages to obtain a hydraulic conductivity at a cell side given the hydraulic conductivities on either side at 
the cell nodes.

• Accumulate the coefficients just evaluated in DYNPROPS into the work arrays CX, COEF(*,*,4), and COEF(*,*,5) at 
the appropriate location. After completing this loop, the values accumulated in these three arrays are the summations 
associated with the mass storage term, the x-direction flux terms, and the y-direction flux terms in Equation 3.11, 
summed over all objects. Since the present formulation results in a coefficient matrix that is symmetric with five non-
zero diagonals, only the lower three diagonals are used (i.e., COEF(*,*,1), COEF(*,*,2), COEF(*,*,3)) by the matrix 
equation solver. 

• End loop through the objects.
• Loop through all cells, accumulating the effective mass storage terms into the main diagonal of the coefficient matrix.
• Loop through all x direction cell sides, accumulating the x direction effective flux coefficients (including the appropriate 

∆x) into the appropriate locations in the main and the x direction subdiagonal.
• Loop through all y direction cell sides, accumulating the y direction effective flux coefficients into the appropriate loca-

tions in the main diagonal, the y direction subdiagonal, and in the right-hand side. 
• Accumulate the terms that account for the boundary conditions into the diagonal and right-hand side using Equations 3.12 

through 3.14. Store coefficients in the FBXY array to be used by UPDATEFLUX and UPDATEFLUXSEGS for evalu-
ating the flux through the polygon segments.

• Define the coefficients corresponding to Equation 3.19 for those cells outside the problem domain. 
• The coefficient matrix and right-hand side are now complete. Return to the MAIN program.

5.4 UPDATE

This routine uses the solution of the matrix equation, defined by MATRIX for h', to update the water contents at the end of the 
time step and to update the time-step size. Given the end-of-time-step water contents, this routine then uses Equations 3.18 and 
3.19 to evaluate the corresponding hm+1 at the end of the time step.

• Accumulate the cell areas of the various objects into a work array to find Ai,j in Equation 3.17. Use Equation 3.17 to find 
the average cell volumetric water content at the end of the time step.

• Re-evaluate the time-step size. If the time step is reduced, set a flag to repeat this time step at the reduced value when the 
program returns to MAIN.

• Mark the cells that are saturated or are adjacent to saturated cells (see discussion following Equation 3.18). 
• Loop through the objects calling THETA_TO_H. This routine loops through all cells that contain an object and updates 

the heads hm+1, given the water contents for those cells that contain only one object and are not marked as saturated or 
adjacent to a saturated cell.

• Loop through all cells, calling THETA_TO_H_NR if the cell contains multiple objects and if the cell is not marked as sat-
urated or adjacent to a saturated cell. THETA_TO_H_NR updates the head to hm+1 using Equation 3.18 and Newton-
Raphson iteration (allowing a maximum of five iterations).

• Return to the MAIN program.
NUREG/CR-6366 28



Richards Equation Solver
5.5 UPDATEFLUX

This routine uses the h' to evaluate the water fluxes through the cell sides for the present time step. UPDATEFLUX does this 
in order as follows.

• Initialize the cell side flux arrays to zero.
• Loop through all polygon objects.

• Evaluate the mass flow through each cell side for those sides corresponding to the Lxk and Lyk lengths of Figure 3.1 
and accumulate these into the flux arrays.

• Evaluate the mass flow through each cell side for those sides corresponding to the Lxk,k* and Lyk,k* lengths of Figure 
3.1 and accumulate these into the flux arrays.

• Evaluate the flows through each boundary segment into each boundary cell using the coefficients FBXY defined in 
MATRIX.

• Convert the cell side mass flows to fluxes based on full cell area and the time-step size.
• End loop through the polygon objects and return to MAIN.

5.6 UPDATEFLUXSEGS

This routine uses the cell side fluxes and the heads to estimate the total water movement through each polygon segment 
(excluding those along the boundary) and each boundary segment through the present time. UPDATEFLUXSEGS does this 
using Equation. 3.21 in order as follows.

• If the first call to UPDATEFLUXSEGS, then
• Loop through cells for which there are multiple objects and CALL H_TO_THEA_UP to evaluate the volumetric 

water contents at the beginning of the time step for each object in the cell. 
• Else

• Set water contents for the beginning of the time step to those obtained at the end of the previous time step.
• End if
• Loop through cells for which there are multiple objects and CALL H_TO_THEA_UP to evaluate the volumetric water 

contents at the end of the time step for each object in the cell. The old and new water contents for those cells with one 
object are already available.

• Loop through all internal polygon objects
• Set the residual matrix RESID to zero. When complete, RESID in UPDATEFLUXSEGS corresponds to Qsegski,j in 

Equation 3.21.
• Add the contribution of the transient term in Equation 3.21 for cells with multiple objects to RESID. The total water 

added into a polygon object is also updated.
• Add the contribution of fluxes associated with the Lxk and Lyk lengths in Figure 3.1 into RESID.
• Add the contribution of boundary fluxes into RESID. The total water through each boundary segment is also updated.

• End the loop through all internal polygon objects.
• RESID for each cell now contains the water that passed through all the polygon segments into that cell. Partition RESID 

to each polygon segment according to the relative length of each segment in that cell (this is an approximation).
• Return to MAIN.
29 NUREG/CR-6366



Richards Equation Solver
NUREG/CR-6366 30



6.0 Example Problems
Three test problems are presented. The first two are used to test the polygon-based algorithm against the flux updating algo-
rithm of Kirkland et al. (1992). The first test problem assumes a simple uniform soil on a rectangular simulation domain with 
water flux applied over a subregion on the top boundary and no flux conditions applied elsewhere. 

The same domain and similar boundary conditions are used for the second test problem. In this case, the domain contains a 
block of sandy loam surrounded by clayey loam. The flux updating algorithm models this region as a simple block of sandy 
loam within the clayey loam. Two simulations of this problem are performed by the polygon-based algorithm. In one, the 
domain is modeled as one polygon object containing a spatial distribution of soil properties (i.e., block of sandy loam sur-
rounded by clayey loam). In the other, the rectangular block of sandy loam is bisected by one of the diagonals to form two tri-
angular objects. In addition, the clayey loam is divided into three polygon objects. The resulting domain is covered by five 
polygon objects, with the properties of either sandy or clayey loam. This case tests the ability of the polygon based algorithm 
to predict flow between non-trivial objects and yet allows the finite difference based, flux updating algorithm to be used for 
comparison. 

In the final problem, the complex geometry associated with a barrier cover for waste isolation is modeled. This example is 
based on the barrier cover presented in Meyer (1993) and is not presented as a test case. It is presented to show additional fea-
tures of the polygon-based code such as head boundary conditions, a sloped upper boundary, and a complex arrangement of 
internal polygons.

6.1 Example 1: Uniform Soil

The first example problem is based on the Plot 2b experiment at the Las Cruces Trench Site and uses the uniform soil model 
for that site (Wierenga et al., 1991). This problem is illustrated in Figure 6.1. A constant flux of 1.82 cm/day is applied over a 
1.2 m length of the top boundary. The residual volumetric water content, θr, is 0.0828; saturated water content, θs, is 0.3209. 
The soil hydraulic properties are modeled using the van Genuchten (1980b) relationship with parameters, α=0.05501 cm-1

 and 
n=1.5093 (the code assumes the third parameter of the van Genuchten model, m=1-1/n). The saturated hydraulic conductivity, 
Ks, is 270.1 cm/day. The initial pressure head is -50,000 cm throughout the domain. 

The geometric input file used to solve this problem is listed in Section 6.1.1. The assumed spatial and temporal units are centi-
meters and days. Note from the input file that the problem is solved over the domain x=-400 cm to 400 cm and y=0 to 500 cm. 
The finite volume cells are each 10 cm by 10 cm. All boundary segments are of the flux type and are bounded by only one 

Flux=q

No Flux

No Flux No Flux

N
o

 F
lu

x

N
o

 F
lu

x

8 m

5 
m

5 
m

1.2 m

q = 1.82 cm/day
θr = 0.0828, θs = 0.3209
α = 0.05501, n = 1.5093

Ks = 270.1 cm/day

h(x,y,0) = -50,000 cm

Figure 6.1. Model domain and van Genuchten parameters for uniform soil example. Simulation domain is 
8-m wide by 5-m deep. Water flux is applied over a 1.2-m wide strip centered on the top 
boundary.
31 NUREG/CR-6366



Example Problems
internal object (polygon object #1). All fluxes are zero except for that applied over the boundary segment (segment #2), which 
starts at (-60,0) and ends at (60,0). Since the interior is modeled by only one object, the same polygon points are used to define 
the internal polygon object. The domain must be fully covered by the internal polygon objects. The corresponding user-sup-
plied subroutines are listed in Section 6.1.2. The spatial, temporal, head, and flux units used in Section 6.1.2 are cm, days, cm, 
and cm/day. A consistent set of units must be used. 

6.1.1 Input File for Example 1
1   :    number of x regions
-400 400 80    : x1 x2 nx - region 1

1   :    number of y regions
0 500 50 : y1 y2 ny - region 1

6 : Number of points for boundary polygon followed by x-y pairs, type, adjacent object #
-400 0 2 1
-60 0 2 1
60 0  2 1
400 0 2 1
400 500 2 1
-400 500 2 1

1 : Total number of internal objects (excluding boundary object)

6 : Number of points for object 1 followed by x-y pairs
-400 0
-60 0
60 0
400 0
400 500
-400 500

6.1.2 User-Supplied Subroutines for Example 1
C
C **************    User-supplied subprograms for water solver   *****************
C

      SUBROUTINE BNDFCN (TIME,NBS,FORCE)
C
C         This is a user-supplied subroutine defining the forcing
C         function for each of the NBS boundary segments as a 
C         function of time. The forcing functions can
C         represent head or flux. In this case, they all represent
C         flux.
C
      DIMENSION  FORCE(NBS)

      DO I=1,NBS
         FORCE(I) = 0.0
      END DO

      FORCE(2) = 1.82

      RETURN
      END
NUREG/CR-6366 32



Example Problems
      SUBROUTINE H_INIT(H,NX,NY,XG,YG,XCG,YCG)
C
C         This is a user-supplied subroutine defining the 
C         initial pressure distribution.
C  
C                   H - Pressure head
C                  NX - Number of cells in x direction
C                  NY - Number of cells in y direction
C                  XG - x coordinates of cell sides
C                  YG - y coordinates of cell sides
C                 XCG - x coordinates of cell centroids (array)
C                 YCG - y coordinates of cell centroids (array)
C
      DIMENSION   H(NX,NY), XG(NX+1), YG(NY+1)
      DIMENSION   XCG(NX,NY), YCG(NX,NY)        

      DO J=1,NY
         DO I=1,NX
            H(I,J) = -50000.
         END DO
      END DO

      RETURN
      END

      SUBROUTINE OUTPUT (NFILEOUT,TIME,H,THETA,FLUXX,FLUXY,NX,NY,
     .                   XG,YG,XCG,YCG)
C
C         This is a user-supplied subroutine defining the output
C         format. All arguments are input from the main program. The
C         user should not change the values of any of these arguments.
C
C            NFILEOUT - Unit number for output file 
C                TIME - Current time
C                   H - Pressure head
C               THETA - Volumetric water content
C               FLUXX - Water flux through cell sides in x-dir
C               FLUXY - Water flux through cell sides in y-dir
C                  NX - Number of cells in x direction
C                  NY - Number of cells in y direction
C                  XG - x coordinates of cell sides (vector)
C                  YG - y coordinates of cell sides (vector)
C                 XCG - x coordinates of cell centroids (array)
C                 YCG - y coordinates of cell centroids (array)
C
      DIMENSION  H(NX,NY), THETA(NX,NY), XG(NX+1), YG(NY+1)
      DIMENSION   XCG(NX,NY), YCG(NX,NY), FLUXX(NX-1,NY), FLUXY(NX,NY-1)   
      DIMENSION   WORK(200,200)    
C
C
C ***     Change the following to a format of your choice. In the following, 
C ***     the coordinates of the cell centroids and the entire volumetric 
C ***     water content array is output in a format suitable for
C ***     the contouring software package used here (Spyglass, Inc., 
C ***     Champaign, IL).
C
      ZERO = 0.0
      WRITE(NFILEOUT,*) NY, NX
      WRITE(NFILEOUT,*) ZERO, ZERO
      WRITE(NFILEOUT,*) (YCG(1,J),J=1,NY)
33 NUREG/CR-6366



Example Problems
      WRITE(NFILEOUT,*) (XCG(I,1),I=1,NX)
      WRITE(NFILEOUT,*) THETA

      RETURN
      END

      SUBROUTINE VG_PROP (N,IOBJ,X,Y,THEAR,THEAS,ALPHA,AN,AKS)
C
C         This is a user-supplied subroutine defining the van Genuchten
C         properties for each object. The user is supplied with the object
C         number and the x, y coordinates of the centroid of each cell that
C         includes that object. The user should then return the corresponding
C         vectors of the van Genuchten properties. Notes: 1) While a centroid 
C         will never lie outside a boundary, it may lie outside an object 
C         even though the object intersects part of the cell. The user should
C         still provide the corresponding van Genuchten properties even though
C         the centroid x, y coordinates may be just outside the object's 
C         polygon. The program uses these values to estimate average values 
C         for that region at the cell interface covered by the object. 
C         2) This routine will be called (actually, multiple calls for 
C         sub regions within an object) only during the initialization of 
C         the problem. 
C
C                   N - Number of cells containing the object (input)
C                IOBJ - Object number (input)
C                 X, Y - Vector of coordinates of centroid of each cell 
C                       containing the object (input)
C               THEAR - Vector of corresponding residual water contents
C               THEAS - Vector of corresponding saturated water contents
C               ALPHA - Vector of corresponding V-G alpha parameters
C                  AN - Vector of corresponding V-G n parameters
C                 AKS - Vector of corresponding saturated hydraulic 
C                       conductivities
C
C
      DIMENSION  X(N), Y(N), THEAR(N), THEAS(N), ALPHA(N), AN(N), AKS(N)
C
C
C ***    In the example that follows, one object is defined with the 
C ***    properties constant across the object (hence, there is no need to 
C ***    use the cell centroids X, Y).
C
C
      IF (IOBJ .EQ. 1) THEN     
C
C ***    Uniform soil
C
         DO I=1,N
            THEAR(I) = 0.0828
            THEAS(I) = 0.3209
            ALPHA(I) = 0.05501
            AN(I) = 1.5093
            AKS(I) = 270.1
         END DO

      ELSE

         WRITE(*,*) ' Information for an object number was requested'
         WRITE(*,*) ' which was not supplied by the user.'
         STOP ' Execution terminated'
NUREG/CR-6366 34



Example Problems
 
      END IF

      RETURN
      END

6.2 Example 2: Blocked Soil 

The second example problem uses the geometry of the first example, but incorporates a block of sandy loam surrounded by 
clay loam. Boundary conditions are identical to the first example with the exception of the value of the input flux, which is 
increased to 5.0 cm/day. The hydraulic properties used for this example are from Kirkland et al. (1992). The hydraulic param-
eters for the clay loam are θr = 0.1060, θs = 0.4686, α = 0.0104 cm-1, n = 1.3954, and Ks = 13.1 cm/day. (Symbols are defined 
in Section 6.1.) The corresponding parameters for the sandy loam are θr = 0.0286, θs = 0.3658, α = 0.0280 cm-1, n = 2.2390, 
and Ks = 541.0 cm/day. The initial pressure head is -50,000 cm thoughout the domain.

This example was simulated two ways. Example 2a uses multiple polygon objects with homogeneous properties. Example 2b 
uses a single polygon object with heterogeneous properties specified in the user-supplied subroutine VG_PROP.

Flux=q

No Flux

No Flux No Flux

N
o

 F
lu

x

N
o

 F
lu

x

8 m

4.
4 

m

1.2 m

Polygon 1

Polygon 5

Polygon 4

Polygon 3

q = 5.0 cm/day
h(x,y,0) = -50,000 cm

Polygon 1, 2, and 5:
     θr = 0.1060, θs = 0.4686
     α = 0.0104, n = 1.3954
     Ks = 13.1 cm/day

Polygon 3 and 4:
     θr = 0.0286, θs = 0.3658
     α = 0.0280, n = 2.2390
     Ks = 541.0 cm/day

2.4 m

1.
2 

m

0.
6 

m

Polygon 2

Figure 6.2. Model domain and van Genuchten parameters for a blocked soil example. Simulation domain is 8 m 
wide by 5 m deep. Water flux is applied over a 1.2-m wide strip centered on the top boundary. Polygons 
3 and 4 form a rectangle 2.4-m wide by 1.2-m deep with the top centered 0.6 m below the irrigated area. 
Polygons shown are for Example 2a. Example 2b uses a single polygon with heterogeneous properties.
35 NUREG/CR-6366



Example Problems
6.2.1 Example 2a: Multiple homogeneous polygon objects

Example 2a is illustrated in Figure 6.2. Note that several of the polygons combine to form equivalent rectangular blocks. This 
allows the flux updating algorithm of Kirkland et. al. (1992) to be used to test the polygon-based algorithm. The corresponding 
geometric input file is listed in Section 6.2.1.1. The assumed spatial and temporal units are cm and days. Thus, the head and 
flux units used are cm and cm/day. A consistent set of units must be used. The entire model domain (as defined by the bound-
ary polygon) must be completely covered by internal polygons. The VG_PROP subroutine used to define the van Genuchten 
properties for the five polygon objects is listed in Section 6.2.1.2. The remaining subroutines are the same as those used for the 
uniform soil example discussed previously with the following exception: the input flux is changed from 1.82 cm/day to 5.0 cm/
day in subroutine BNDFCN.

6.2.1.1 Input File for Example 2a

1    :    Number of delta x regions
-400 400 80    : x1 x2 nx - region 1

1    :    Number of delta y regions
0 500 50 : y1 y2 ny - region 1

8 : Number of points for boundary polygon followed by x-y pairs, type, adjacent object #
-400 0 2 1
-60 0 2 1
60 0  2 1
400 0 2 1
400 60 2 5
400 500 2 5
-400 500 2 5
-400 60 2 2

5 : Total number of internal polygons

5 : Number of points for polygon 1 followed by x-y pairs
-400 0
-60 0
60 0
400 0
400 60

5 : Number of points for polygon 2 followed by x-y pairs
400 60
120 60
-120 60
-400 60
-400 0

3 : Number of points for polygon 3 followed by x-y pairs
-120 60
120 60
120 180

3 : Number of points for polygon 4 followed by x-y pairs
-120 60
120 180
-120 180

8 : Number of points for polygon 5 followed by x-y pairs
-400 60
-120 60
-120 180
120 180
NUREG/CR-6366 36



Example Problems
120 60 
400 60
400 500
-400 500

6.2.1.2 User Subroutine VG_PROP for Example 2a

      SUBROUTINE VG_PROP (N,IOBJ,X,Y,THEAR,THEAS,ALPHA,AN,AKS)
C
C         This is a user-supplied subroutine defining the van Genuchten
C         properties for each object. The user is supplied with the object
C         number and the x, y coordinates of the centroid of each cell that
C         includes that object. The user should then return the corresponding
C         vectors of the van Genuchten properties. Notes: 1) While a centroid 
C         will never lie outside a boundary, it may lie outside an object 
C         even though the object intersects part of the cell. The user should
C         still provide the corresponding van Genuchten properties even though
C         the centroid x, y coordinates may be just outside the object's 
C         polygon. The program uses these values to estimate average values 
C         for that region at the cell interface covered by the object. 
C         2) This routine will be called (actually, multiple calls for 
C         sub regions within an object) only during the initialization of 
C         the problem. 
C
C                   N - Number of cells containing the object (input)
C                IOBJ - Object number (input)
C                 X, Y - Vector of coordinates of centroid of each cell 
C                       containing the object (input)
C               THEAR - Vector of corresponding residual water contents
C               THEAS - Vector of corresponding saturated water contents
C               ALPHA - Vector of corresponding V-G alpha parameters
C                  AN - Vector of corresponding V-G n parameters
C                 AKS - Vector of corresponding saturated hydraulic 
C                       conductivities
C
C
      DIMENSION  X(N), Y(N), THEAR(N), THEAS(N), ALPHA(N), AN(N), AKS(N)
C
C
C ***    In the example that follows, five objects are defined with the 
C ***    properties constant across each object (hence, no need to use
C ***    the cell centroids X, Y).
C
C
      IF (IOBJ .EQ. 1 .OR. IOBJ .EQ. 2 .OR. IOBJ .EQ. 5) THEN     

C
C ***    Clayey loam
C
         DO I=1,N
            THEAR(I) = 0.1060
            THEAS(I) = 0.4686
            ALPHA(I) = 0.0104
            AN(I) = 1.3954
            AKS(I) = 13.1
         END DO

      ELSE IF (IOBJ .EQ. 3 .OR. IOBJ .EQ. 4) THEN
C
C ***    Sandy loam
C

37 NUREG/CR-6366



Example Problems
         DO I=1,N
            THEAR(I) = 0.0286
            THEAS(I) = 0.3658
            ALPHA(I) = 0.0280
            AN(I) = 2.2390
            AKS(I) = 541.0
         END DO

      ELSE

         WRITE(*,*) ' Information for an object number was requested'
         WRITE(*,*) ' which was not supplied by the user.'
         STOP ' Execution terminated'
 
      END IF

      RETURN
      END

6.2.2 Example 2b: Single heterogeneous polygon object

The domain of Example 2 can also be defined in a much simpler fashion than described above for Example 2a. The same 
domain can be defined using one internal object with spatially variable properties. In this case, Example 2b, the geometry file 
is identical to that shown for the Example 1. The VG_PROP subroutine for Example 2b is given in Section 6.2.2.1. Note that 
this greatly simplifies the geometry file without complicating the user-supplied van Genuchten subroutine. When the geometry 
of the internal objects are simple, this method can be used as an alternative to defining multiple objects. 

6.2.2.1 User Subroutine VG_PROP for Example 2b

      SUBROUTINE VG_PROP (N,IOBJ,X,Y,THEAR,THEAS,ALPHA,AN,AKS)
C
C         This is a user-supplied subroutine defining the van Genuchten
C         properties for each object. The user is supplied with the object
C         number and the x, y coordinates of the centroid of each cell that
C         includes that object. The user should then return the corresponding
C         vectors of the van Genuchten properties. Notes: 1) While a centroid 
C         will never lie outside a boundary, it may lie outside an object 
C         even though the object intersects part of the cell. The user should
C         still provide the corresponding van Genuchten properties even though
C         the centroid x, y coordinates may be just outside the object's 
C         polygon. The program uses these values to estimate average values 
C         for that region at the cell interface covered by the object. 
C         2) This routine will be called (actually, multiple calls for 
C         sub regions within an object) only during the initialization of 
C         the problem. 
C
C                   N - Number of cells containing the object (input)
C                IOBJ - Object number (input)
C                 X, Y - Vector of coordinates of centroid of each cell 
C                       containing the object (input)
C               THEAR - Vector of corresponding residual water contents
C               THEAS - Vector of corresponding saturated water contents
C               ALPHA - Vector of corresponding V-G alpha parameters
C                  AN - Vector of corresponding V-G n parameters
C                 AKS - Vector of corresponding saturated hydraulic 
C                       conductivities
C
C
      DIMENSION  X(N), Y(N), THEAR(N), THEAS(N), ALPHA(N), AN(N), AKS(N)
C

NUREG/CR-6366 38



Example Problems
C
C ***    In the example that follows, one object is defined with the 
C ***    properties given as a function of location in the object.
C
C
      DO I=1,N
         IF (X(I) .GE. -120. .AND. X(I) .LE. 120. .AND.
     .       Y(I) .GE. 60. .AND. Y(I) .LE. 180.) THEN
C
C ***       Sandy loam
C
            THEAR(I) = 0.0286
            THEAS(I) = 0.3658
            ALPHA(I) = 0.0280
            AN(I) = 2.2390
            AKS(I) = 541.0

         ELSE
C
C ***       Clayey loam
C
            THEAR(I) = 0.1060
            THEAS(I) = 0.4686
            ALPHA(I) = 0.0104
            AN(I) = 1.3954
            AKS(I) = 13.1
 
         END IF
      END DO

      RETURN
      END

6.3 Example 3: Engineered Cover 

The last example is the engineered barrier cover already discussed in Chapter 2. This example problem is taken from Meyer 
(1993). The spatial and temporal units for all variables in this problem are in feet and days. We use these units rather than SI 
units to demonstrate that other units can be used. The output results will thus have spatial units in feet and days. The geometry 
for this cover is defined in Figure 2.1 with the geometry file presented in Section 2.2.1 and the user-supplied subroutines (with 
one exception) presented in Section 2.3.1. The user-supplied subroutine VG_PROP contains the hydraulic properties for each 
of the materials shown in Figure 2.1. A constant flux of 2.835×10-4 ft/day was applied along the entire top boundary. The 
lower boundary was held at a constant pressure head of zero. Vertical boundaries are no flow boundaries; the right represents a 
symmetry condition and the left boundary is assumed to be far enough from the concrete vault that its influence there is negli-
gible (Meyer, 1993). The initial condition given in subroutine H_INIT is a unit gradient pressure (hanging water column).

We used the user-supplied OUTPUT subroutine given in Section 6.3.1 rather than that given in Section 2.3.1. The user-speci-
fied output file is used to output the head distribution in a format suitable for import to the scientific visualization package 
Transform (Spyglass, Inc., Champaign, IL). Two additional files are opened to output the x and y components of flux at the cell 
centers. Since the fluxes evaluated by the algorithm are those normal to the cell sides, simple averaging was used to define flux 
components at the cell centers. These fluxes are then normalized by 10 times the flux applied at the surface. This scales the 
vectors for graphical output. Only one output time (day 1050) was used when running this program. Thus this subroutine is 
called only once. 

6.3.1 User Subroutine OUTPUT for Example 3
      SUBROUTINE OUTPUT (NFILEOUT,TIME,H,THETA,FLUXX,FLUXY,NX,NY,
     .                   XG,YG,XCG,YCG)
C
C         This is a user-supplied subroutine defining the output
39 NUREG/CR-6366



Example Problems
C         format. All arguments are input from the main program. The
C         user should not change the values of any of these arguments.
C
C            NFILEOUT - Unit number for output file 
C                TIME - Current time
C                   H - Pressure head
C               THETA - Volumetric water content
C               FLUXX - Water flux through cell sides in x-dir
C               FLUXY - Water flux through cell sides in y-dir
C                  NX - Number of cells in x direction
C                  NY - Number of cells in y direction
C                  XG - x coordinates of cell sides (vector)
C                  YG - y coordinates of cell sides (vector)
C                 XCG - x coordinates of area centroids (array)
C                 YCG - y coordinates of area centroids (array)
C
      DIMENSION  H(NX,NY), THETA(NX,NY), XG(NX+1), YG(NY+1)
      DIMENSION   XCG(NX,NY), YCG(NX,NY), FLUXX(NX-1,NY), FLUXY(NX,NY-1)   
      DIMENSION   WORK(200,200)    
C
C
C ***     Output head distribution to user-defined output file in a
C ***     format suitable for import into the Spyglass visualization
C ***     software package Transform (Spyglass, Inc., Champaign, IL). 
C ***     The cell center points (i.e., average of the locations of the 
C ***     cell sides) rather than area centroids are used since they
C ***     lie on a rectangular grid pattern. The centroids may not be 
C ***     at the center of those cells through which a boundary 
C ***     segment passes (upper boundary for this case).
C ***      
C

      ZERO = 0.0

      WRITE(NFILEOUT,*) NY, NX
      WRITE(NFILEOUT,*) ZERO, ZERO
      WRITE(NFILEOUT,*) ((YG(J+1)+YG(J))/2.0,J=1,NY)
      WRITE(NFILEOUT,*) ((XG(I+1)+XG(I))/2.0,I=1,NX)
      WRITE(NFILEOUT,*) H

C
C ***    Use a work array to evaluate and output the x and y components
C ***    of the fluxes at the center of each cell in Spyglass format.
C ***    Since FLUXX and FLUYY are the fluxes at the cell sides,
C ***    simple averages are used to estimate the fluxes at the cell
C ***    centers. Only one output time will be specified when running 
C ***    Water.f. As a result, the new files opened below will be 
C ***    opened only once during execution. 
C

      DO J=1,NY
         DO I=1,NX
            WORK(I,J) = 0.0
         END DO
      END DO

      DO J=2,NY-1
         DO I=2,NX-1
            WORK(I,J) = (FLUXX(I,J) + FLUXX(I-1,J)) / 2.0
         END DO
      END DO
C

NUREG/CR-6366 40



Example Problems
C ***     Normalize by 10 times the flux applied at the surface
C ***     (see subroutine BNDFCN).
C
      DO J=2,NY-1
         DO I=2,NX-1
            WORK(I,J) = WORK(I,J) / (10.0 *  2.835E-4)
         END DO
      END DO

      OPEN (UNIT=15,STATUS='UNKNOWN',FILE='Xdir')
         WRITE(15,*) NY, NX
         WRITE(15,*) ZERO, ZERO
         WRITE(15,*) ((YG(J+1)+YG(J))/2.0,J=1,NY)
         WRITE(15,*) ((XG(I+1)+XG(I))/2.0,I=1,NX)
         WRITE(15,*) ((WORK(I,J),I=1,NX),J=1,NY)
      CLOSE (UNIT=15)

      DO J=2,NY-1
         DO I=2,NX-1
            WORK(I,J) = (FLUXY(I,J) + FLUXY(I,J-1)) / 2.0
         END DO
      END DO
C
C ***     Normalize by 10 times the flux applied at the surface
C ***     (see subroutine BNDFCN).
C
      DO J=2,NY-1
         DO I=2,NX-1
            WORK(I,J) = WORK(I,J) / (10.0 *  2.835E-4)
         END DO
      END DO

      OPEN (UNIT=15,STATUS='UNKNOWN',FILE='Ydir')
         WRITE(15,*) NY, NX
         WRITE(15,*) ZERO, ZERO
         WRITE(15,*) ((YG(J+1)+YG(J))/2.0,J=1,NY)
         WRITE(15,*) ((XG(I+1)+XG(I))/2.0,I=1,NX)
         WRITE(15,*) ((WORK(I,J),I=1,NX),J=1,NY)
      CLOSE (UNIT=15)

      RETURN
      END
41 NUREG/CR-6366



Example Problems
NUREG/CR-6366 42



7.0 Results
7.1 Introduction

Here we compare the predictions of the polygon-based Richards equation solver to those of the flux updating algorithm of 
Kirkland et al. (1992). The same spatial discretization (∆x = ∆y = 10 cm) was used by both algorithms for Examples 1 and 2 
(see previous chapter), but different temporal step sizes were used. This is because the two algorithms use different adaptive 
time-step strategies. Since the polygon-based algorithm is designed to be used as a production code, it uses a more conserva-
tive adaptive time-step strategy that results in smaller average time steps. In this chapter, θpoly refers to the volumetric water 
content obtained from the polygon-based algorithm, and θflux refers to the volumetric water content obtained from the flux 
updating algorithm of Kirkland et al. (1992). CPU times were intentionally not tabulated for comparisons since the flux updat-
ing algorithm is a stripped down, special purpose solver whereas the polygon-based algorithm is a more general purpose solver 
that can be applied to complex geometries. In general, CPU times for the polygon-based solver were of the same order of mag-
nitude as the flux updating solver.1 Finally, a contour plot of head and vector plots of flux are presented for an engineered cover 
[Example 3, see the previous chapter and Meyer (1993)]. This example is presented to show features of the algorithm not rep-
resented in the first two examples. The example also shows the effect that a well-engineered capillary break can have on the 
flow through an engineered cover. 

7.2 Results and Comparative Analysis for the First Two Test Cases

The preprocessor Watermap outputs the mapping of the objects onto the underlying cells. This map is shown in Figure 7.1 for 
the blocked soil modeled, which is defined by five internal polygon objects. The other maps for this problem are not shown 
since they contain only one internal object. Each cell is represented by the object number mapping onto that cell. Only the last 
digit of the object numbers is shown. Cells that contain multiple objects are denoted by an '*'. As the output map illustrates, 
this test case contains many cells that are occupied by more than one object. 

Contour plots for the first two test problems are shown in Figures 7.2 through 7.4. Figure 7.2 shows contours of volumetric 
water contents θpoly and θflux on day 70 for the uniform soil. Figures 7.3 and 7.4 show the volumetric water contents on day 
50 for the blocked soil using two polygon-based methods (see the discussion in the previous chapter) to specify the soil prop-
erties. The results of the polygon-based algorithm and that of the flux updating algorithm for each test problem show no per-
ceivable difference. There appears to be no distortion of the results due to the triangular-shaped polygons. 

To further define the differences between the predictions of the two algorithms, Table 7.1 presents several statistics for the vol-
umetric water content of the flux updating algorithm, θflux, and for the difference between the algorithm predictions, θpoly-
θflux, for the population of nodal values of water content on the 80 by 50 cell grid. As the results of the table indicate, there is 
little difference between the predictions of the two algorithms. The largest difference is 0.001 for the uniform soil test case. 
The mean errors are essentially zero, and the standard deviations of the errors are small relative to the standard deviations of 
the flux updating algorithm predictions. The differences between the algorithm predictions are remarkably small considering 
the differences in the setup of the matrix equations and the different adaptive time-step strategies for the two algorithms.

7.3 Results for the Engineered Cover

The object map generated by Watermap for the engineered cover problem is shown in Figure 7.5. The map is shown in a small 
font so that the full map can appear on one page. Cells that are fully outside the boundary polygon are denoted by a '-'. Note 
that, as required, the internal polygons cover the entire domain defined by the boundary polygon. In this test problem, water is 
applied at a uniform flux normal to the inclined upper boundary. The lower boundary is assumed to be at the water table (h=0), 
with the lateral boundaries acting as no-flux boundaries. The initial head distribution is defined by a unit gradient in the pres-
sure head down to the water table. 

The Richards equation solver Water prints time, time-step size, and the number of iterations for the equation solver for each 
time step. A summary of water movement through the various polygon segments is also printed to the screen for each output 
time. This part of the screen output is shown in Figure 7.6 for day 1050. In this output, water flow is the total water that has 

1.  In an independent review of the PolyRES code, Dr. J. T. McCord ran Example 2 using the VS2DT code (Healy, 1990) on a 486 DX2/50 IBM compatible 
computer and obtained results essentially identical to those presented here. The PolyRES code was approximately 1.9 times faster than VS2DT for this prob-
lem (J. T. McCord, Sandia National Laboratories, September 11, 1995). In a benchmarking study of infiltration modeling, McCord and Goodrich (1994) found 
VS2DT to be 2 to 10 times faster than comparable codes. These results suggest that PolyRES is a competitive code with respect to computational efficiency.
43 NUREG/CR-6366



Results
**************111111111111111111111111111111111111111111111111111111111111111111
2222222222222**************11111111111111111111111111111111111111111111111111111
22222222222222222222222222***************111111111111111111111111111111111111111
222222222222222222222222222222222222222***************11111111111111111111111111
22222222222222222222222222222222222222222222222222222**************1111111111111
222222222222222222222222222222222222222222222222222222222222222222**************
5555555555555555555555555555**33333333333333333333335555555555555555555555555555
555555555555555555555555555544**333333333333333333335555555555555555555555555555
55555555555555555555555555554444**3333333333333333335555555555555555555555555555
5555555555555555555555555555444444**33333333333333335555555555555555555555555555
555555555555555555555555555544444444**333333333333335555555555555555555555555555
55555555555555555555555555554444444444**3333333333335555555555555555555555555555
5555555555555555555555555555444444444444**33333333335555555555555555555555555555
555555555555555555555555555544444444444444**333333335555555555555555555555555555
55555555555555555555555555554444444444444444**3333335555555555555555555555555555
5555555555555555555555555555444444444444444444**33335555555555555555555555555555
555555555555555555555555555544444444444444444444**335555555555555555555555555555
55555555555555555555555555554444444444444444444444**5555555555555555555555555555
55555555555555555555555555555555555555555555555555555555555555555555555555555555
55555555555555555555555555555555555555555555555555555555555555555555555555555555
55555555555555555555555555555555555555555555555555555555555555555555555555555555
55555555555555555555555555555555555555555555555555555555555555555555555555555555
55555555555555555555555555555555555555555555555555555555555555555555555555555555
55555555555555555555555555555555555555555555555555555555555555555555555555555555
55555555555555555555555555555555555555555555555555555555555555555555555555555555
55555555555555555555555555555555555555555555555555555555555555555555555555555555
55555555555555555555555555555555555555555555555555555555555555555555555555555555
55555555555555555555555555555555555555555555555555555555555555555555555555555555
55555555555555555555555555555555555555555555555555555555555555555555555555555555
55555555555555555555555555555555555555555555555555555555555555555555555555555555
55555555555555555555555555555555555555555555555555555555555555555555555555555555
55555555555555555555555555555555555555555555555555555555555555555555555555555555
55555555555555555555555555555555555555555555555555555555555555555555555555555555
55555555555555555555555555555555555555555555555555555555555555555555555555555555
55555555555555555555555555555555555555555555555555555555555555555555555555555555
55555555555555555555555555555555555555555555555555555555555555555555555555555555
55555555555555555555555555555555555555555555555555555555555555555555555555555555
55555555555555555555555555555555555555555555555555555555555555555555555555555555
55555555555555555555555555555555555555555555555555555555555555555555555555555555
55555555555555555555555555555555555555555555555555555555555555555555555555555555
55555555555555555555555555555555555555555555555555555555555555555555555555555555
55555555555555555555555555555555555555555555555555555555555555555555555555555555
55555555555555555555555555555555555555555555555555555555555555555555555555555555
55555555555555555555555555555555555555555555555555555555555555555555555555555555
55555555555555555555555555555555555555555555555555555555555555555555555555555555
55555555555555555555555555555555555555555555555555555555555555555555555555555555
55555555555555555555555555555555555555555555555555555555555555555555555555555555
55555555555555555555555555555555555555555555555555555555555555555555555555555555
55555555555555555555555555555555555555555555555555555555555555555555555555555555
55555555555555555555555555555555555555555555555555555555555555555555555555555555

Figure 7.1. Object map for the blocked soil. Each integer represents the object number covering a finite volume 
cell. The symbol '*' is used to represent those cells covered by more than one object.
NUREG/CR-6366 44



Results
Figure 7.3. Contours of volumetric water content on day 70 for Example 2a: Blocked Soil. 
(A) Flux updating algorithm, (B) Polygon-based algorithm with multiple 
internal objects.

0.2

0.3

0.4

0.40.4

0.4 0.2

0.2

0.3

-400 -200 0 200 400

0

100

200

300

400

500

Horizontal Distance, cm

D
ep

th
, c

m

0.2
0.3

0.4

0.40.40.2
0.3

0.4 0.2

-400 -200 0 200 400

0

100

200

300

400

500

Horizontal Distance, cm

D
ep

th
, c

m
(A)

(B)
45 NUREG/CR-6366



Results
Figure 7.4. Contours of volumetric water content on day 70 for Example 2b: Blocked Soil. 
(A) Flux updating algorithm, (B) Polygon-based algorithm with a single 
internal object with spatially varying properties.

0.2

0.3

0.4

0.40.4

0.4 0.2

0.2

0.3

-400 -200 0 200 400

0

100

200

300

400

500

Horizontal Distance, cm

D
ep

th
, c

m

0.4 0.2
0.3

0.40.2
0.3

0.40.20.4

-400 -200 0 200 400

0

100

200

300

400

500

Horizontal Distance, cm

D
ep

th
, c

m

(A)

(B)
NUREG/CR-6366 46



Results
moved across a segment or segments since the beginning of the simulation. For example, approximately 10.9 ft.2 of water (the 
spatial and temporal units used to define the variable in the input files were feet and days) has moved across boundary segment 
one and 16.4 ft.2 has moved across boundary segment two during the 1050 days of simulation. Approximately 3.3 ft.2 of water 
has moved out of the model domain into the water table through the constant head boundary (h=0) defined by segment eight. 
The remaining boundary segments are defined as zero flux segments. 

The net water flow through each internal polygon object segment is also listed in Figure 7.6. As expected, water flows into 
objects through some of the segments (denoted by positive values) and out of the objects through other segments (denoted by 
negative values). The net water flow into the simulation domain was calculated to be 24.05302 ft.2. This is evaluated by sum-
ming the net water flow through all of the boundary segments into the domain (i.e., the values listed at the top of Figure 7.6). 
The net water flow into the simulation domain is also evaluated by calculating the total change in water content in all of the 
internal polygon objects. This value is shown as 24.02780 ft.2. The difference between these numbers is the global mass bal-
ance error for the 1050 day simulation, approximately 0.1 percent. This error is larger than would be expected from the flux 
updating algorithm of Kirkland et al. (1992). Although the polygon-based code uses the same mass conservative algorithm, the 
polygon-based algorithm apparently introduces additional mass balance errors. 

Also shown in Figure 7.6 is an estimated mass balance error due to the saturated nodes. Since a node may become saturated 
during a time step, it is possible to predict super-saturated nodes for a time step. Note that in this case, the estimated error due 
to this effect was found to be zero. Finally, the water flow through all internal polygon segments for all objects is summed. 
Those segment that lie along a boundary are not included. Since water flowing across a segment from object a to object b is 
defined as a negative flow for object a and as an equal but positive flow for object b, this sum should be zero. As the results 
indicate, a net flow was evaluated to be approximately -0.0017, which is less than 0.1 percent of the water added to the system 
through the boundary. This indicates that the fluxes across polygon segments are consistent, globally, to less than 0.1 percent. 

Contour and vector plots generated from the Water output file (format defined by the user-supplied subroutine OUTPUT) are 
shown in Figures 7.7 through 7.10. Figure 7.7 shows contours of the head distribution for day 1050 of a simulation. Note, the 
concrete/waste region (see Figure 2.1) is essentially unaffected by the surface flow. The water appears to move down the slope 
of the capillary barrier and pool (i.e., reach saturated conditions) at the bottom center of the simulation domain. For this engi-
neered cover to succeed over long periods of time, a drain must be provided in this area. 

Figure 7.8 presents a vector plot for the flux distribution across all cells. The fluxes are normalized by ten times the flux added 
to the surface. A flux equal to that applied at the surface will thus appear as a vector of length 0.1 ft. as defined by the coordi-
nate axis shown in the figure. Only those normalized fluxes that are greater than 0.05 are shown (all of the fluxes are available 
in the output file). This corresponds to fluxes that are half of the surface flux or greater. Note that water moves down slope 
along the capillary barrier, draining through the vertical sand column between x=36 ft. and x=37.5 ft. The water then moves 
into the clayey sand below 51 ft. and out through the bottom of the simulation domain into the water table. 

Figure 7.9 shows a close-up view for the flux field near the coordinates (35 ft., 20 ft.). The flux where the flow turns the corner 
into the vertical sand column and drains downward is considerably larger than the flux applied at the surface. This is expected, 
since all of the water that was applied to the right of this region can flow through this region if the capillary barrier is effective. 
A close-up view of the flux field for a single vertical column of nodes above the capillary barrier at x=59.5 ft. is shown in Fig-
ure 7.10. The flux of the water increases as one moves closer to the capillary barrier for all but the lowest cell. This cell con-

Table 7-1. Prediction and prediction error statistics. The statistics are based on the volumetric water contents (cm3/
cm3) at 4000 points (i.e., each point in a 80 by 50 cell grid) for each simulation. θflux represents the 
predictions of the flux updating algorithm, θpoly1 represents the predictions of the polygon-based 
algorithm for the five object soil, and θpoly2 represents the predictions of the polygon-based algorithm for 
the one object soil with spatially variable properties across the object

Statistic

Uniform Soil Blocked Soil

θflux θpoly-θflux θflux θpoly1-θflux θpoly2-θflux
Minimum 0.0870 -0.0010 0.1127 -0.0003 -0.0003

Maximum 0.2310 0.0005 0.4629 0.0002 0.0002

Mean 0.1252 6.3499E-07 0.2038 2.1000E-06 2.1000E-06

Std. Deviation 0.0521 1.1786E-04 0.1108 3.9572E-05 3.9572E-05
47 NUREG/CR-6366



Results
Figure 7.2. Contours of volumetric water content on day 70 for Example 1: Uniform Soil. 
(A) Flux updating algorithm, (B) Polygon-based algorithm.

0.100.10
0.14

0.18
0.22 0.22

0.18
0.14

-400 -200 0 200 400

0

100

200

300

400

500

Horizontal Distance, cm

D
ep

th
, c

m

0.10
0.14

0.18

0.22 0.22
0.18

0.14

0.10

-400 -200 0 200 400

0

100

200

300

400

500

Horizontal Distance, cm

D
ep

th
, c

m
(A)

(B)
NUREG/CR-6366 48



Results
---------------------------------------------------------------------------------------*
--------------------------------------------------------------------------------------*5
-------------------------------------------------------------------------------------*55
------------------------------------------------------------------------------------*555
-----------------------------------------------------------------------------------*5555
----------------------------------------------------------------------------------*55555
---------------------------------------------------------------------------------*555555
--------------------------------------------------------------------------------*5555555
-------------------------------------------------------------------------------*5555555*
------------------------------------------------------------------------------*5555555*3
-----------------------------------------------------------------------------*5555555*33
----------------------------------------------------------------------------**555555*333
---------------------------------------------------------------------------**555555*3333
--------------------------------------------------------------------------**555555*33333
-------------------------------------------------------------------------**555555*333333
------------------------------------------------------------------------**555555*3333333
-----------------------------------------------------------------------**555555*33333333
----------------------------------------------------------------------**555555*333333333
---------------------------------------------------------------------**555555*3333333333
--------------------------------------------------------------------**555555*33333333333
-------------------------------------------------------------------**555555*333333333333
------------------------------------------------------------------**555555*3333333333333
-----------------------------------------------------------------**555555*33333333333333
----------------------------------------------------------------**555555*333333333333333
---------------------------------------------------------------**555555*3333333333333333
--------------------------------------------------------------**555555*33333333333333333
-------------------------------------------------------------**555555*333333333333333333
------------------------------------------------------------**555555*3333333333333333333
-----------------------------------------------------------**555555*33333333333333333333
----------------------------------------------------------**555555*333333333333333333333
---------------------------------------------------------**555555*3333333333333333333333
--------------------------------------------------------**555555*33333333333333333333333
-------------------------------------------------------**555555*333333333333333333333333
------------------------------------------------------**555555*3333333333333333333333333
-----------------------------------------------------**555555*33333333333333333333333333
----------------------------------------------------**555555*333333333333333333333333333
---------------------------------------------------**555555*3333333333333333333333333333
--------------------------------------------------**555555*33333333333333333333333333333
-------------------------------------------------**555555*333333333333333333333333333333
------------------------------------------------**555555*3333333333333333333333333333333
-----------------------------------------------**555555*33333333333333333333333333333333
----------------------------------------------**555555*333333333333333333333333333333333
---------------------------------------------**555555*3333333333333333333333333333333333
--------------------------------------------**555555*33333333333333333333333333333333333
-------------------------------------------**555555*333333333333333333333333333333333333
------------------------------------------**555555*3333333333333333333333333333333333333
-----------------------------------------**555555*33333333333333333333333333333333333333
----------------------------------------**555555*333333333333333333333333333333333333333
---------------------------------------**555555*3333333333333333333333333333333333333333
--------------------------------------**555555*33333333333333333333333333333333333333333
-------------------------------------**555555*333333333333333333333333333333333333333333
------------------------------------**555555*3333333333333333333333333333333333333333333
-----------------------------------**555555*33333333333333333333333333333333333333333333
----------------------------------**555555*333333333333333333333333333333333333333333333
---------------------------------**555555*3333333333333333333333333333333333333333333333
--------------------------------**555555*33333333333333333333333333333333333333333333333
-------------------------------**555555*333333333333333333333333333333333333333333333333
------------------------------**555555*3333333333333333333333333333333333333333333333333
-----------------------------**555555*33333333333333333333333333333333333333333333333333
----------------------------*2*55555*333333333333333333333333333333333333333333333333333
---------------------------*22*5555*3333333333333333333333333333333333333333333333333333
--------------------------*222*555*33333333333333333333333333333333333333333333333333333
-------------------------*2222*55*333333333333333333333333333333333333333333333333333333
------------------------*22222*5*3333333333333333333333333333333333333333333333333333333
-----------------------*222222*533333333333333333333333333333333333333333333333333333333
----------------------*2222222*533333333333333333333333333333333333333333333333333333333
---------------------*22222222*533333333333333333333333333333333333333333333333333333333
--------------------*222222222*533333333333333333333333333333333333333333333333333333333
-------------------*2222222222*533333333333333333333333333333333333333333333333333333333
------------------*22222222222*533333333333333333333333333333333333333333333333333333333
-----------------*222222222222*533333333333333333333333333333333333333333333333333333333
----------------*2222222222222*533333333333333333333333333333333333333333333333333333333
---------------*22222222222222*533333333333333333333333333333333333333333333333333333333
--------------*222222222222222*533333333333333333333333333333333333333333333333333333333
-------------*2222222222222222*533333333333333333333333333333333333333333333333333333333
------------*22222222222222222*5333333333333333333333333333333333333333333**************
-----------*222222222222222222*53333333333333333333333333333***************4444444444444
----------*2222222222222222222*533333333333333***************444444444444444444444444444
---------*22222222222222222222*53**************44444444444444444444444444444444444444444
--------*222222222222222222222*53*444444444444444444444444444444444444444444444444444444
-------*2222222222222222222222*53*444444444444444444444444444444444444444444444444444444
------*22222222222222222222222*53*444444444444444444444444444444444444444444444444444444
-----*222222222222222222222222*53*444444444444444444444444444444444444444444444444444444
----*2222222222222222222222222*53*444444444444444444444444444444444444444444444444444444
---*22222222222222222222222222*53*444444444444444444444444444444444444444444444444444444
--*222222222222222222222222222*53*444444444444444444444444444444444444444444444444444444
-*2222222222222222222222222222*53*444444444444444444444444444444444444444444444444444444
*22222222222222222222222222222*53*444444444444444444444444444444444444444444444444444444
222222222222222222222222222222*53*444444444444444444444444444444444444444444444444444444
222222222222222222222222222222*53*444444444444444444444444444444444444444444444444444444
222222222222222222222222222222*53*444444444444444444444444444444444444444444444444444444
222222222222222222222222222222*53*444444444444444444444444444444444444444444444444444444
222222222222222222222222222222*53*444444444444444444444444444444444444444444444444444444
222222222222222222222222222222*53*444444444444444444444444444444444444444444444444444444
*22222222222222222222222222222*53*444444444444444444444444444444444444444444444444444444
**2222222222222222222222222222*53*444444444444444444444444444444444444444444444444444444
1**222222222222222222222222222*53*444444444444444444444444444444444444444444444444444444
11**22222222222222222222222222*53*444444444444444444444444444444444444444444444444444444
111**2222222222222222222222222*53*444444444444444444444444444444444444444444444444444444
1111**222222222222222222222222*53*444444444444444444444444444444444444444444444444444444
11111**22222222222222222222222*53*444444444444444444444444444444444444444444444444444444
111111**2222222222222222222222*53*444444444444444444444444444444444444444444444444444444
1111111**222222222222222222222*53*444444444444444444444444444444444444444444444444444444
11111111**22222222222222222222*53*444444444444444444444444444444444444444444444444444444
111111111**2222222222222222222*53*444444444444444444444444444444444444444444444444444444
1111111111**222222222222222222*53*444444444444444444444444444444444444444444444444444444
11111111111***2222222222222222*53*444444444444444444444444444444444444444444444444444444
1111111111111**222222222222222*53*444444444444444444444444444444444444444444444444444444
11111111111111**22222222222222*53*444444444444444444444444444444444444444444444444444444
111111111111111**2222222222222*53*444444444444444444444444444444444444444444444444444444
1111111111111111**222222222222*53*444444444444444444444444444444444444444444444444444444
11111111111111111**22222222222*53*444444444444444444444444444444444444444444444444444444
111111111111111111**2222222222*53*444444444444444444444444444444444444444444444444444444
1111111111111111111**222222222*53*444444444444444444444444444444444444444444444444444444
11111111111111111111**22222222*53*444444444444444444444444444444444444444444444444444444
111111111111111111111**2222222*533333333333333333333333333333333333333333333333333333333
1111111111111111111111**222222*533333333333333333333333333333333333333333333333333333333
11111111111111111111111***2222*533333333333333333333333333333333333333333333333333333333
1111111111111111111111111111111111111111111111111111111111111111111111111111111111111111
1111111111111111111111111111111111111111111111111111111111111111111111111111111111111111
1111111111111111111111111111111111111111111111111111111111111111111111111111111111111111
1111111111111111111111111111111111111111111111111111111111111111111111111111111111111111
1111111111111111111111111111111111111111111111111111111111111111111111111111111111111111
1111111111111111111111111111111111111111111111111111111111111111111111111111111111111111
1111111111111111111111111111111111111111111111111111111111111111111111111111111111111111
1111111111111111111111111111111111111111111111111111111111111111111111111111111111111111
1111111111111111111111111111111111111111111111111111111111111111111111111111111111111111
1111111111111111111111111111111111111111111111111111111111111111111111111111111111111111

Figure 7.5. Object map for the engineered cover
49 NUREG/CR-6366



Results
tains some of the gravel below the capillary barrier and thus has a lower effective flux. It is interesting to note that the longest 
vector is approximately five units long, which corresponds to approximately 50 times the flux applied to the surface. 

Net water flow through boundary segments into domain (Seg #, Water flow):

1   10.92751
          2   16.39207
          3  0.0000000E+00
          4  0.0000000E+00
          5  0.0000000E+00
          6  0.0000000E+00
          7  0.0000000E+00
          8  -3.266566
          9  0.0000000E+00
         10  0.0000000E+00

Net water flow through object segments into objects (Obj #, Seg #, Water flow):
          1           1   6.333026
          1           2   6.288396
          1           3  0.0000000E+00
          1           4  0.0000000E+00
          1           5  0.0000000E+00
          2           1  0.0000000E+00
          2           2   1.977063
          2           3 -0.9863616
          2           4  -6.363867
          2           5  0.0000000E+00
          3           1  5.7973131E-04
          3           2  0.0000000E+00
          3           3 -9.6463690E-09
          3           4 -6.8008649E-07
          3           5 -8.1205899E-06
          3           6  0.0000000E+00
          3           7  -1.024803
          3           8   2.230026
          4           1  6.7100331E-07
          4           2  0.0000000E+00
          4           3  4.5936486E-09
          4           4  7.9837207E-08
          5           1  -2.038961
          5           2  -3.764146
          5           3  -2.668345
          5           4 -3.3491568E-04
          5           5  0.0000000E+00
          5           6  0.0000000E+00

Net water flow through all boundaries into domain:    24.05302
Net water flow into all objects:    24.02780
Net water not accounted for due to saturation:   0.0000000E+00
Net water flow through all object segments:  -1.7734226E-02

Figure 7.6. Water movement across segments as output from Water for Example 3: Engineered Cover
NUREG/CR-6366 50



Results
 

F
ig

ur
e 

7.
7.

C
on

to
ur

s 
of

 p
re

ss
ur

e 
he

ad
 a

t 
10

50
 d

ay
s 

fo
r 

E
xa

m
pl

e 
3:

 E
ng

in
ee

re
d 

C
ov

er
51 NUREG/CR-6366



Results
   

6050403020100

0
10

20
30

40
50

60
70

80
90

Vertical Distance, ft

H
or

iz
on

ta
l D

is
ta

nc
e,

 f
t

 

F
ig

ur
e 

7.
8.

V
ec

to
r 

pl
ot

 o
f w

at
er

 fl
ux

 a
t 1

05
0 

da
ys

 fo
r 

E
xa

m
pl

e 
3:

 E
ng

in
ee

re
d 

C
ov

er
. A

 v
ec

to
r 

of
 le

ng
th

 1
.0

 ft
. i

nd
ic

at
es

 a
 fl

ux
 1

0 
ti

m
es

 t
he

 fl
ux

 a
pp

lie
d 

at
 t

he
 u

pp
er

 b
ou

nd
ar

y.
 O

nl
y 

no
rm

al
iz

ed
 fl

ux
es

 g
re

at
er

 t
ha

n 
0.

05
 f

t.
 a

re
 s

ho
w

n.
52 NUREG/CR-6366



Results
   

232221201918171615

30
31

32
33

34
35

36
37

38
39

40

Vertical Distance, ft

H
or

iz
on

ta
l D

is
ta

nc
e,

 f
t

 

F
ig

ur
e 

7.
9.

D
et

ai
l o

f 
w

at
er

 fl
ux

 n
ea

r 
th

e 
co

rn
er

 o
f 

th
e 

ca
pi

lla
ry

 b
ar

ri
er

 a
t 

10
50

 d
ay

s 
fo

r 
E

xa
m

pl
e 

3:
 E

ng
in

ee
re

d 
C

ov
er

. 
A

 v
ec

to
r 

of
 le

ng
th

 1
.0

 f
t.

 in
di

ca
te

s 
a 

flu
x 

10
 t

im
es

 t
he

 fl
ux

 a
pp

lie
d 

at
 t

he
 u

pp
er

 b
ou

nd
ar

y.
 O

nl
y 

no
rm

al
iz

ed
 

flu
xe

s 
gr

ea
te

r 
th

an
 0

.0
5 

ft
. a

re
 s

ho
w

n.
53 NUREG/CR-6366



Results
    151413121110

53
54

55
56

57
58

59
60

Vertical Distance, ft

H
or

iz
on

ta
l D

is
ta

nc
e,

 f
t

 

F
ig

ur
e 

7.
10

.
D

et
ai

l o
f w

at
er

 fl
ux

 fo
r 

a 
si

ng
le

 c
ol

um
n 

of
 n

od
es

 a
bo

ve
 th

e 
ca

pi
lla

ry
 b

ar
ri

er
 a

t x
=5

9.
5 

ft
. f

or
 E

xa
m

pl
e 

3:
 E

ng
in

ee
re

d 
C

ov
er

. 
T

im
e 

is
 1

05
0 

da
ys

. A
 v

ec
to

r 
of

 le
ng

th
 1

.0
 f

t.
 in

di
ca

te
s 

a 
flu

x 
10

 t
im

es
 t

he
 fl

ux
 a

pp
lie

d 
at

 t
he

 u
pp

er
 b

ou
nd

ar
y.

 

 

O
bj

ec
t 

5:
 S

an
d

O
bj

ec
t 

3:
 G

ra
ve

l

C
om

pu
ta

ti
on

al
G

ri
d 

B
lo

ck
s

NUREG/CR-6366 54



8.0 Discussion and Conclusions
    

The objective of this work was to develop the flux updating Richards equation algorithm of Kirkland et. al. (1992) into a user-
friendly software package suitable for modeling water flow in variably saturated soils. The flux updating algorithm was chosen 
because it has been shown to be one of the fastest available (Kirkland et al., 1992) for modeling water flow through unsatur-
ated/saturated soils and because it is especially well-suited for modeling infiltration into dry soils characteristic of arid envi-
ronments. 

The primary goals that guided the development of the software package were 1) complex geometries associated with barrier 
caps should be very easy for the user to specify and modify, and 2) execution of the water solver must be very fast so that it can 
be used to model large-scale problems over long time scales. The intended users of the package are scientists and engineers 
who have a basic familiarity with the Richards equation and with FORTRAN. The geometry of the problem, including the 
location and type of boundaries and the shape of internal objects, are defined through a very simple input file. The remaining 
input data, such as the transient behavior of the boundary conditions, are provided through user-supplied subroutines. This pro-
vides the user with more flexibility as to the type of problems solved.

A user-friendly preprocessor was developed that allows the user to define the hydraulic property fields in terms of geometry 
objects (polygons) independent of the computational grid. The user specifies the number of polygon object corner points and 
the location of each point for each object. The user also defines a boundary polygon. Each segment in the boundary polygon 
can represent a different type of boundary (head, flux, or unit-gradient).

A preprocessor maps the polygons onto a rectangular finite volume grid defining the computational domain. Intersections 
between the polygon sides and the grid cells are evaluated and used to define weighted volume and area parameters. These 
parameters are subsequently used by the water solver to evaluate effective hydraulic properties for the finite volume cells. 

The Richards equation solver uses the mapping information generated by the preprocessor and the user supplied subroutines 
defining the distribution of the van Genuchten parameters (van Genuchten, 1980a, 1980b) across the objects, initial conditions, 
and time dependence of the boundary conditions. This solver is based on the flux updating algorithm of Kirkland et al. (1992), 
but is completely restructured to efficiently handle complex geometries. 

The primary advantages of this approach are 

1. The user can specify polygon objects that are independent of the underlying grid. The user is not required to define an 
underlying grid using finite volumes or elements that align with the object boundaries. Modifying or adding an object does 
not require modification to the grid.

2. The use of rectangular cells with a rectangular finite difference algorithm greatly enhances computational efficiency and 
reduces the memory requirements of the water flow algorithm. Computational efficiency is of primary concern for algo-
rithms to be used for long-term predictions and for Monte-Carlo analysis.

The polygon-based Richards equation solver was tested by comparing model predictions to those obtained from a research 
code using the flux updating algorithm of Kirkland et. al. (1992). This research code has been used extensively for model vali-
dation (Hills et al., 1994 ) and has been compared to other algorithms (Kirkland et al., 1992). The comparisons between the 
polygon-based code developed here and the flux updating algorithm show that both codes give similar results. Contour plots of 
predictions of water content for the two codes were indistinguishable. The largest volumetric water content difference 
observed at the end of the simulations across all nodes was 0.0001 cm

 

3

 

/cm

 

3

 

. This difference is partially due to the different 
adaptive time-step algorithms used by the two codes, which resulted in different time-step sizes. 

To our knowledge, the methodology used here to map complex geometries onto simple computational grids is unique in 
vadose zone hydrology and has much potential. This method explicitly accounts for discontinuities in the hydraulic properties 
when a computational cell is bisected by two soil types. The method assumes continuity in head but accounts for discontinuity 
in hydraulic properties and in volumetric water content across such a bisection. Because of this, there is no need for the under-
lying computation grid to align with discontinuities in hydraulic properties. This simplifies the incorporation of adaptive grids, 
where the grids adapt over time in response to changing conditions in the computational cells. Finally, the algorithm can be 
readily extended to include transport since the geometry and water flow information required for transport is already evaluated 
by the algorithm. 
55 NUREG/CR-6366



Discussion and Conclusions
   
NUREG/CR-6366 56



9.0 References
    

Healy, R. W., “Simulation of Solute Transport in Variably Saturated Media with Supplemental Information on Modifications to 
the USGS’s Computer Program VS2D,” 

 

Water Resources Investigations Report 90-4025,

 

 U.S. Geological Survey, Denver, CO, 
1990.

Hills, R. G. and P. J. Wierenga, with contributions from S. Luis, D. Mclaughlin, M. Rockhold, J. Xiang, B. Scanlon, and G. 
Wittmeyer. “INTRAVAL Phase II Model Testing at the Las Cruces Trench Site.” 

 

NUREG/CR-6063,

 

 U.S. Nuclear Regulatory 
Commission, Washington, DC., 1994.

Kirkland, M. R., R. G. Hills, and P. J. Wierenga. “Algorithms for Solving Richards' Equation for Variably Saturated Soils.” 

 

Water Resources Research

 

, Vol. 28, No. 8, pp. 2049-2058, 1992.

McCord, J. T. and M. T. Goodrich, “Benchmark Testing and Independent Verification of the VS2DT Computer Code,” 

 

SAND91-1526,

 

 Sandia National Laboratories, Albuquerque, NM, 1994.

Meyer, P. D. “Performance Assessment of a Hypothetical Low-Level Waste Facility: Application of an Infiltration Evaluation 
Methodology.” 

 

NUREG/CR-6114,

 

 Vol. 1, U.S. Nuclear Regulatory Commission, Washington, DC., 1993.

van Genuchten, M. Th. “Calculating the Unsaturated Hydraulic Conductivity with a New Closed-Form Analytical Model.” 
Report 78-WR-08, Dept. of Civil Engineering, Princeton University, 63 pp., 1980a.

van Genuchten, M. Th. “A Closed-Form Equation for Predicting the Hydraulic Conductivity of Unsaturated Soils.” 

 

Soil Sci. 
Soc. Am. J.,

 

 Vol. 44, pp. 892-898, 1980b.

Wierenga, P. J., R. G. Hills, and D. B. Hudson. “The Las Cruces Trench Site: Characterization, Experimental Results, and One 
Dimensional Flow Predictions.” 

 

Water Resources Research

 

, Vol. 27, No. 10, 1991. 
57 NUREG/CR-6366


	Abstract
	Contents
	Figures
	Tables
	Foreword
	Acknowledgments
	1.0 Introduction
	1.1 Overview
	1.2 Approach

	2.0 User's Manual
	2.1 Overview
	2.2 Watermap
	Figure 2.1. Example geometry
	2.2.1 Sample Geometry File for Figure 2.1

	2.3 Water
	2.3.1 User-Supplied Subroutines for Water Corresponding to Figure 2.1


	3.0 Theory
	3.1 Overview
	(3.1)
	(3.2)
	(3.3)

	3.2 Mass Balance
	Figure 3.1. Polygon objects and computational grid
	(3.4)
	(3.5)
	(3.6)
	(3.7)
	(3.8)
	(3.9)
	(3.10)

	3.3 Boundary Conditions
	(3.11)
	Figure 3.2. Two boundary segments
	Head Boundary Conditions
	(3.12)

	Flux Boundary Conditions
	(3.13)

	Unit Gradient Boundary Conditions
	(3.14)


	3.4 Cells Fully Outside the Boundary
	(3.15)

	3.5 Mass Correction
	(3.16)
	(3.17)
	(3.18)
	(3.19)

	3.6 Fluxes Between Polygon Objects
	(3.20)
	(3.21)

	3.7 Summary

	4.0 Preprocessor
	4.1 Overview
	4.2 MAIN
	4.3 BNDFLUX
	4.4 BOUNDINFO
	4.5 FILL

	5.0 Richards Equation Solver
	5.1 Overview
	5.2 MAIN
	5.3 MATRIX
	5.4 UPDATE
	5.5 UPDATEFLUX
	5.6 UPDATEFLUXSEGS

	6.0 Example Problems
	6.1 Example 1: Uniform Soil
	Figure 6.1. Model domain and van Genuchten parameters for uniform soil example. Simulation domain...
	6.1.1 Input File for Example 1
	6.1.2 User-Supplied Subroutines for Example 1

	6.2 Example 2: Blocked Soil
	Figure 6.2. Model domain and van Genuchten parameters for a blocked soil example. Simulation doma...
	6.2.1 Example 2a: Multiple homogeneous polygon objects
	6.2.1.1 Input File for Example 2a
	6.2.1.2 User Subroutine VG_PROP for Example 2a

	6.2.2 Example 2b: Single heterogeneous polygon object
	6.2.2.1 User Subroutine VG_PROP for Example 2b


	6.3 Example 3: Engineered Cover
	6.3.1 User Subroutine OUTPUT for Example 3


	7.0 Results
	7.1 Introduction
	7.2 Results and Comparative Analysis for the First Two Test Cases
	Figure 7.1. Object map for the blocked soil. Each integer represents the object number covering a...
	Figure 7.2. Contours of volumetric water content on day 70 for Example 1: Uniform Soil. (A) Flux ...
	Figure 7.3. Contours of volumetric water content on day 70 for Example 2a: Blocked Soil. (A) Flux...
	Figure 7.4. Contours of volumetric water content on day 70 for Example 2b: Blocked Soil. (A) Flux...
	Table 7-1. Prediction and prediction error statistics. The statistics are based on the volumetric...

	7.3 Results for the Engineered Cover
	Figure 7.5. Object map for the engineered cover
	Figure 7.6. Water movement across segments as output from Water for Example 3: Engineered Cover
	Figure 7.7. Contours of pressure head at 1050 days for Example 3: Engineered Cover
	Figure 7.8. Vector plot of water flux at 1050 days for Example 3: Engineered Cover. A vector of l...
	Figure 7.9. Detail of water flux near the corner of the capillary barrier at 1050 days for Exampl...
	Figure 7.10. Detail of water flux for a single column of nodes above the capillary barrier at x=5...


	8.0 Discussion and Conclusions
	9.0 References

